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ON THE ANGULAR CORRELATIONS IN RADIATIVE MUON CAPTURE
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The angular correlation in the reaction
B (A, 2) > (4, Z=1)* 4w, = (4, Z=1)Fy 4,

between the polarization pseudovector of the muon, the direction of the neutrino momentum,
the direction of the gamma quantum momentum and its circular polarization are calculated.
The exact formulas are given for the allowed transitions and the first and second forbidden
transitions. It is shown that for the unique transitions some correlation constants depend very
strongly on the induced pseudoscalar term and are almost independent of the nuclear structure.
The results of numerical calculations are presented for some unique transitions.

1. Introduction

One of the main questions in the theory of nuclear muon capture process is to determine
for this reaction the weak interaction constants. The experimental data admit a very range
of values [1] for some of them. The total capture rate is rather insensitive to the relations
between the constants because the character of elementary processes is disturbed by the
nuclear effects [2]. However, we can get more information with the aid of angular correlation
effects in partial transitions. The transitions depending weakly on nuclear structure are
favoured. The theory of partial transitions was given by Morita and Fujii [3] where the
classification of the forbiddenness of muon capture reaction is presented. Morita and Gre-
enberg [4] obtained the formula for the angular distribution of recoil nuclei for unique
0 £, 1 transitions. Korenman and Eramzyan [5] considered also the nonunique 0 45 I
transitions.

Popov [6] was the first who proposed to study the gamma-neutrino correlation in
radiative muon capture in order to determine the induced pseudoscalar constant.

Lately, Bukhvostov and Popov [7] obtained a general expression for the angular cor-
relations considered below for any partial transition by taking into account mesoatom super-
fine structure levels. But this general expression is not convenient for comparison with
experiment.
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Those correlations have not yet been experimentally examined, but it would be interest-
ing to prepare the theroretical conclusions, bearing in mind possible experiments in the
future. In this paper we give a modified form of Popov’s formula (section 2). We get the
exact formulas for the allowed and the first and second forbidden transitions without taking
into consideration the circular polarization of the gamma quantum in section 3. In other
sections we study the dependence of some interesting correlations (the gamma-neutrino
correlations, correlations with the circular polarization of the gamma quantum, etc.) on the
induced pseudoscalar term.

2. General expression
We consider the following complex process
p+A, 2y > (4, Z-1)* +v, > (4, Z—1) +y+7,

The changes of nuclear spins are the following

A A
o= —>]2
where jy, jy, J; denote the spins of the initial, excited and final nuclei, respectively, We con-

sider angular correlations between the following vectors: the polarization pseudovector of
the muon on the K-orbit of the mesoatom

P = Po

(o is a unit vector), the unit vector in the direction of neutrino momentum g, the unit
vector in the direction of the momentum of the gamma quantum % and its circular polariza-
tion. The complicated Popov’s formula for angular correlations [6] is transformed to the
following simpler and more convenient form

Woc Y # (1)L, X ((f]'fII’ S% % r) w AL A BUBIS, (aqk) (1)

where we sum over all quantum numbers. We want to stress that J (and J’) mean the total
angular momentum of the neutrino. Here I and I’ denote the total angular momentum
of the neutrino-muon system.

Of course, we have

(Aol ST < {J1+ol @
The quantities A, describe the multipolarity L and the circular polarization 7= +1 of
the gamma quantum. For the pure electromagnetic transitions of character 2L we have

A, = @+ DI@S+DEL+DPFCLso Wof ST ) W js LinSihL).- ©)
C5.y» Wlabcedef), X(abedefghi) are Clebsch-Gordan, Racah and Fano coefficients, respecti-
vely. Ag, is connected with the F-coefficients defined by the formula (96) in [8]:
Agy = @+ D W oju ISTj) Fs(LLjyjy). @
Our coefficient satisfies

AGy = (=D)%45 4 )
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For the case of mixed ML and E (L+1) radiations we have to make a substitution using
the formula (99) from the above mentioned work.
We also use the following notation

. 1 )
A =53 al, ©
n

Some interesting values of the A%, coefficients for the unique transitions are given in Table 1.
The angle-dependent term S,;, (¢qk) in formula (1) is given in Appendix. The quantity
A, has the form
A, = 6,+Pd,,. )
The dynamics of weak interaction in the muon capture process is contained in the quan-
tity BY, which can be presented in the form

1J
BY = Xlaj,l—f—}'—'YIaJ,I—} ©)
TABLE 1
Some values of /1{9[,1 for ““pure” gamma transitions
Spin A{gl 1 Examples of unique muon capture
sequIe nee S—1 S_s S—4 S—6 Capturing E, Multipo-
- - - h nucleus [MeV] larity
0101 Vit )6
1201 ik Ve | — 1s N1 7.03 E2
2 12
3201 —il/% - Lve B 3.37 E2
3 42
0202 . /14 2 V7o |
Voo | W gl
3 1 —
0212 = — /14 0 cr 1.672% El
21/10 20
3 1 ,—
3102 — = —1/14 0 B0 5.96 El
5)/10 | 70
1302 e B RV 3/)/70 N
3)/10 35
0303 ‘_1— ! 21 ]/I/154 > 231
217 7 ’ 154

1C. P. Swann, Phys. Rev., 148, 1119 (1966).
2 A. Gallmann, F. Hobou, P. Fintz, Phys. Rev., 138, B560 (1965).
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where we introduce by definition

I+1 I+1
M= (2I+3) (Vi—Ao) +i Gy (=P,

I+1\ [ T . I+1 I
yr= (-zm) (I+1 Vi+Ax ) —IW(MH- T_—I_—IPI). 9
We used above four combinations of nuclear matrix elements and weak formfactors character-
istic for this process

o)
o (I
2 Ay = — [I@I+3)] {cA[l m—V3Crg M[ (2[111)] ([0 IT+]—[0 IT-])—
= I
% — Coll i) g 731 ([1 T4+ iy 01~ ])
= C 1
5 + 3 areE VI -V1B-VI [1I+1Ip1)}
%
Z — BU+DEI+3)]} {c,,[om+cy g I+l ( [0 IT+]+[0 II—] +
= oM 2I+1 \T+1
g
§ 1} Cv(L+po—pn) 337 [1(2111)] (H+]-[=])—
=
S 1 ¢
3 ~Ew ey V=1l + VI+1[11+1Ip])}
~ 3
§ M= (I%) {c,, (/T+1 [\[—1I]— VI [L+11)) +
=
E + Co(L+pp—ptn) 537 9 (YI[UI+1+] — VIFI[I—1T—]—
<
§ & arvyr

= Cq (T [UI—1I)+ YT+1 U+ 11D +(Co— Ca) 537 (V?[u—u 1+

+ VIFT [U+1I+]) +[BERI+1) C—J& [0 IIP], (10)

where [kwl] etc. denote nuclear matrix elements defined by Morita and Fujii {3], C; denote
the weak interaction constants, u, and g, are anomalous magnetic moments of proton and
neutron respectively, g is the energy of the neurtino, M the nucleon mass.
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The quantities A; and V; are different from zero in the case 1 when the change of parity
of the nuclear levels j, and j, is (—1)f only. For M, and P, the allowed parity change is
(—1)'*1. According to the Morita and Fujii [3] classification the spin I(2) and parity change
in muon capture can assume the values (0%, 1t), (0—, 1, 27), (N(—)N, N+1 (—)™) for the
allowed transition (N = 0) and the first and N-th forbidden transitions, respectively.
Then for the N-th forbidden transitions the general expression (1) is simpler because we can
write x; and y; (9) in the form

a1 = VN+1 (Vn—AN) Sin+i(N+2)(Mys1—Pn+1) 61, n+1—1 V5 Pydn610
N .
¥1 = I/N-}-]. (N_-I—].- VN+AN) Sin—1 [(N-|-2) Mn+1+(N+].) PN+1] 61’N+1 . (].].)

The unique transitions are defined by I = I' = N+ 1. Then the formulas become simpler.

We want to stress that formula (1) describes a real situation only in those cases when the
superfine structure of the mesoatom does not play any role [7] (i. e.j, = O or the statistical
occupation of the superfine levels for the unpolarized muons).

3. Exact formulas for partial transitions

The form of correlations easily compared with the experiment for the N-th forbidden
transitions is as follows

2N +2

WN — 1+(oc”—% c';’) P-q+ Z (@N+5NP - q) Pk -q) +
=1

2N+1

+ 3 &P - k+d¥PAq - )Pk -q), (12)
=0

where &, alY, b, cI¥ and @V are the correlation constants depending on the weak interaction
form factors, the structure of nuclei and kinematic effects. The quantities Py(k -q) are the
Legendre polynomials. When we do not measure the correlations with the circular polariza-
tion of the gamma quantum, k appears in even powers only. Then, because of (5) and (6),
we have

a12\:(+1=bg+1:(:§;("=dg=0’ (i:O’l,---N)o

The additional restrictions give us, as usually, the gamma quantum multipolarity and the
spin of the intermediate nucleus j;
al =b=cN, =dN,=0 for all ],

min {2j,, 2L} in the case of pure radiations,
min {2/,,2L+2} in the case of mixed radiations.

The correlations PAq - BP, (k - ) are not time-reversal invariant. They are considered in
paper [9].



Fasc. 6

Vol. XXXII (1967)

ACTA PHYSICA POLONICA

878

The total probability of the N-th forbidden muon capture is proportional to the
quantity

N+1
Ay— —~-7’\*['— A%+ VE+(N+1) P+ (N+2)Me1 410 Py

2
with (A—N> == 0 (See formula (10)).
N for N=0

We give below the correlation constants for the allowed transitions and first and second
forbidden transitions calculated from expression (1), where for simplicity we do not take
into account the circular polarization of the gamma quantum.

I. Allowed transitions N==0, 4j= |jo—/;| =0, 1 (no),

Ay = —Va+2Mi—P2,
a3dy = V6 AN (ME—PY),
B3, = V6 A(M,—P)?,
(& +id$) Ay = 3V6ALM,P]. (13)

Here and below for convenience we do not take into consideration the imaginary parts
of the correlation constants invariant under time reversal, with the exception of the correla-
tion constants CN. As a particular case, we can obtain Popov’s formulas [6] for a small

induced pseudoscalar.
I1. First forbidden transitions N=1, 4= 0,1, 2 (yes),

ald; = — 10P2+24%— V2 +3M2—2P2
addy = VAN AT— VD) — 2048 PoPy—6 V5 A3 A, My— < V14 AFBME +4P),
6
aidy = = /70 AL (Pi M),
b3A, = 20 AP Py (P,—M,) + V6 A3 (A, — V)2 +
+ 2V5 454 (—34,M,+ V,M,+2A4,P,) +
+ -1% V14 AP (—3ME—4M,P,+4P3) — %— Cid,,
6
bydy = — = V70 43 (M,—Py),
(ct+id}) A, = 30 ALPEM,+3V6 ALALYV,—
2 3 :
— 3Y/5A (V¥ M,+24,P}) +15 1/ o APPIM, + o (c+id) 4,

(A+idd) A, = —3 V70 AM,P;}. (14)
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111, Second forbidden transitions N =2, 4j= 2, 3 (no)
3

o2 ly = o A3—V3+4M;—3P,
5
a*dy = — iz A3 ( A2+2V2) —2/30 A A,M,—2 /21 AS(ME+PY),
atdy = — —1/— AR(A2—V2) +10 /3 ABAM, + 11 V154 A33(2M2+9P%),
2 — 10 /231 A(M2—P?2
g 1=1—] 6!1( 3 3)9
by = 7 A3 (— —2—A2 24,V, 4+ 2V3) + 1/_/12..( 3AMy+3A4,Py+2V,M;) +

+ %VzT AB(—3M2—2M, Py +3P2)— % ca,,

b4, = — S VIO AR (Ay— Vi —2 V3 A5y - My+34,Py+
1
+ 2V,M,) + ﬁ1/ 4 AB(2ME—12M,Py—9P2),
b, = — 1/231 AB(M,—P,)?,

. 15

(c}+id) Ay = = /1 24,V — V30 AB2V3sMy+34,P%) +
+2V/21 A M,P,+ 3 = (G +id3) 45,
2 r A2 35 22 7 23 * *
(@+idd) Ay = —3Y/ 5 A2 4, VE + 51/3 AZY2VF M,y+34,P%) —
V15 4 A MyP3+ 17 (c51+id§) Ay,

(i) Ay = 5 VBT AZMPS, (15)

4. Capture of unpolarized muons

Because of muon depolarization in mesoatoms caused by spin-orbital interaction the
magnitude of the vector P cannot exceed approximately one-sixth of the initial polarization
[10]. The additional interaction with the nuclear spin in the case of muon capture by spin
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targets diminishes the magnitude of the polarization [11]. Then the importance of correla-
tions independent of P grows. When muons are unpolarized we are dealing with gamma-
neutrino correlations only. In the case of nonunique

Ir - y .
0 ! > J2
ransitions the correlation constants are the following

1
N Ay = (—1W SvF AN %

x{@2N+1) CNono [2N2Vx+@N(N+1)—1(1+1) Ax] —
— [+ D)@N+1—1) @N+1+2)]% 2N+1) CNon 110 AX}
except for O* 07 2> Jo transitions, for which
a} = 0.
For unique transitions we obtain correspondingly

(=1 NN
2(N+T1)

X {2N+3) CNs10n+10 Q(N+1D)2 PRrya + 2N+ D)(N+2) — (1 +1)] Miyyq) —

N 4N
a A7 =

— [[I+1)@N+3—)@N+4+D)] 2N +3) CN+10N+20 Mir4a} -
Now we restrict ourselves to the study of unique transitions

In this case almost all matrix elements are of the Gamov-Teller type. One of them [1 NN+1]
is considerably greater than others [3]. Omitting in My, and Py, the additional small
terms we obtain the effective constants for the muon capture process.

Pys1 o P= Ca + 50 (Ca—Cr)

My o M= Cq— %4 Cy(1 + ptp— pin) (16)

We want to stress that all a). (like ™ and Ay) give twofold values of Cp/C,4 and for a unique
interpretation of the experimental results it is necessary to postulate Cp < 21 C4. These
quantities have one extremal point at Cp ~21 C, and are symmetrical with regard to this
point. In the N-th forbidden transitions only the correlation constant apy , 5 depends strongly
on Cp[C,. This strong dependence is caused by the partial compensation of the main Gamov-
Teller term because

ay ., 3 An o P2— M2, a7
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This correlation constant is determined by the (N+-1)-th wave of the neutrino because the
N-th wave vanishes. It is easy to see that the maximal value of all correlation constants
(except for those not invariant under time reversal) does not dependent on the nuclear

l‘— . 3 - .

structure. The dependence a ( g—P) for 0¥ ~——> 1*——> 0 transitions is shown in Fig. 1.
A

One can see that for the transitions 0 = N 41 -0 the correlation constants are always the

largest.
We show the influence of the nuclear structure in Fig. 1. This influence is similar for
other correlation constants. We assumed that the ratios between small main matrix ecle-

C
Fig. 1. The correlation constant ag for the 0¥*— 1*— 0 transition (EZ = —0.8, pp—p, = 3.7, Ail = 0.1) .
‘A

The influence of nuclear structure is marked

ments change in the range (—0.04 - +0.04) independently. The medium curve is drawn
for the cases when the additional matrix elements are not taken into account. It refers also
to other graphs. Two other curves express maximal deviation from it.

Instead of the experiment determining the angular disiribution, the angular asymmetry
measurement is often used. We define the asymmetry coefficient by the ratio of recoil nuclei
in the directions perpendicular and parallel to the direction of the gamma quantum momentum.
For 0%->2¥F—» 1 transitions (for the exemplary muon capture by C'%) we have (without
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taking into account the gamma quantum polarization)

This is shown in Fig. 2.

The correlation ocPyy, (K - q) can be used in order to determine the value of Cpmore
exactly.

Cp
,

Fig. 2. The asymmetry coefficient 4 for 0 — 2¥ - 1 transition

5. Other time invariant correlations

When we do nol measure the gamma quantum angular distribution, then the formula (12
takes the usual form

WN =1+a"P - q
where

N+1
N

aNAy = AX—VE—(N+1) PRri1+(N+2)Mar 11— 10 P26y,

The exact form for special cases of &” was given in some papers [4], [5]. For muon capture

by the protons the known result for the asymmetry of recoil neutrons

2M?2—Ch— P2

o=
2M?+ C}+P?

can be easily obtained.
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In another simple case when the recoil nuclei are not registered we have
N =1+ (cﬁ’ + ébﬁ’)P—k

where

IN+1)(V+ D
30N+ Ay = [ENFDNEDE oo 2 ovviedn) +

2N+3)(N-+2) |}
+ [———————[( i )] AGEOOED [N L 42N 1) My Pl
We show these correlation constants for some transitions with the right polarized gamma

quantum in Fig. 3.
Among other correlation constants the CY,, are remarkable. For unique transitions

they have the form

N
CZH—IAN o< MN+1PN+1

s L i I

o0 10 20 30 4bc%
A

Fig. 3. The correlation constants & for allowed transitions and coN + 5 biv
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They give a unique value of Cpand depend strongly on the pseudoscalar formfactor. They
are large for small arguments, for Cp = 21 C, they are equal to zero and antisymmetrical
with respect to this point. The quantities €? and 53 for 0* — 1* — 0 transitions are shown
in Fig. 4. The information about the sign of the constant CY is sufficient to remove the
ambiguity of the value of Cp in all experiments where a twofold value is allowed.

It is noteworthy that nonunique 0~ N transitions do not depend on Cpand can be help-
ful for a more exact estimation of the other interaction constants [12].

L 1 L

O 10 20 30 40 Cpr.
AT

Fig. 4. The correlation constants bg and c(l) for 0* — 1* — 0 transition

The authors are very indebted to Dr N. P. Popov, Physico-Technical Institute, Lenin-
grad, for many valuable suggestions, his encouragement and constant help throughout the
course of this work, and to Professor J. Rzewuski and Dr. J. Lukierski for kind interest.

APPENDIX

The functions S, (6qk) are defined by

£

1 o oa
S (6qk) = (4n)'h @S+t Z Comefrn Yena 25 Yy (29) Yo, (24) . (A1)

N1hiNs
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These functions are invariant under rotations and can be expressed by invariants constructed
with the aid of the vectors o, q and k. We are interested in this paper in the cases when
r= 0.1 only. Then we obtain

Soys(@qk) = 8, (2S+1)'P,(k - @), (A2)
S, s(oqk) = V3 (25+1)tx
X {[S@S—1)]7%,s_sl0 - k Pg(k - @)—o - q Ps_(k - q)] +
+US+1) @S+3)]7¥;, salo - k Ps(k - q)—o - q Ps (k- )] +

+i8, [S(S+1)]"*q e - k Pi(k - q)} (A3)
where
Pi(x) = % Pi(x) = Z @l—4i—1) Pr_gi_y (%) (A4)
I==0

1
5 (!—2) for I even

1
5 ({—1) for I odd

and Py(x) are the usual Legendre polynomials. The formulas (A3) can be easily obtained when
we consider the functions S, s(eqk) in a coordinate system where ¢ or k is parallel to z
axis.
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