Fasc. 6

Vol. XXXII (1967)

ACTA PHYSICA POLONICA

Vol. XXXII (1967) ACTA PHYSICA POLONICA Fase. 6(12)
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On the basis of a uniform method developed by Zietek the relative energies for all possible
orientations of 90°, 71° and 109° Bloch walls in cubic ferromagnetic lattices are numerically
calculated and the corresponding curves given. The dependence of the energies on the crystallo-
graphic orientation is used to examine the stability of certain domain structures. The results
obtained are complementary to those derived by other authors.

1. Introduction

Ferromagnetic crystals characterize by the existence of a domain structure, i. e., the
crystal is divided into domains magnetized in different crystallographic directions (direc-
tions of easiest magnetization). In the body centred cubic lattice (e.g., Fe), there are six
such directions which coincide with the crystallographic axes of type (100); in the face
centred cubic lattice (e. g., Ni), one has eight those directions that correspond to the crystal-
lographic axes (111> (see Figs 1 and 2).

The boundary between two neighbouring domains is, generally speaking, the region
in which the magnetization changes its position from one easy direction to another. When
within the domain boundary the magnetization changes its position by rotating around
an axis which is perpendicular to the boundary, the laiter is called a Bloch wall. In bulk
crystals Bloch walls are energetically more favourable than those with the rotation axis
parallel to the plane of the boundary (Néel walls), as in the latter case free magnetic poles
are produced within the wall which increases the energy considerably.

It is easily seen that for two arbitrary easy directions shown in Fig. 1 or 2 there is,
from the geometrical point of view, an infinite number of Bloch walls with different crystallo-
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graphical orientation by which the transition between these easy directions can be realized.
Let us denote by @ and b the unit vectors which indicate any two easy directions in the
crystal, and by e the unit vector which defines the rotation axis of the Bloch wall. Then,
two cases are to be considered:

i) @ = —b. The magnetization vectors of adjacent domains form an angle of 180°
and, according to Figs 1 and 2, this case takes place in the bee as well as in the fec lattice.
The condition for such a 180°. Bloch wall class is e- @ = 0.

i) @# —b. In the bec lattice, the magnetization vectors of adjacent domains form
then, according to Fig. 1, an angle of 90°, and in the fcc lattice, according to Fig. 2, the
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Fig. 1. Directions of easiest magnetization in the bec lattice
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Fig. 2. Directions of easiest magnetization in the fce lattice

angles ~71° or ~109° (the angle 71° is formed, for example, by the directions [111] and
{111], and the angle 109° by the directions [111] and [I11]). The condition for the res-
pective (i. e., 90°, 71° and 109°) Bloch wall classes is in this case e(@—b) = 0. Conse-
quently, the rotation of the magnetization vector in the Bloch wall takes now place on a
cone and the vectors @ and b will, in general, lie asymmetrically on it; this results in two
different rotation angles (left- and right-hand rotation) by which one can pass from @
to b. Denoting by @ the smaller of those angles we note the relation

y< O
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where y stands for 90°, 71° or 109°, respectively. Therefore, in the case of 90°, 71° or 109°
Bloch wall classes the crystallographic orientation (i. e., the vector €) does not determine
completely a Bloch wall because there are still two possibilities, namely, the rotations @
or 2z— @ by which it can be realized. For few particular orientations of the rotation axis
it happens that beside the vectors @ and b also some other easy directions are lying on the
cone. In that case, two or three Bloch walls may be produced when passing from @ to b.

The Bloch wall energies for the respective classes were already calculated in some
papers [1], [2], [3] (¢f- [4] pp- 286—290). The problem investigated in the present paper is
the same, the differences residing in the approach.

In the papers [1], [2], [3] the energy density of a single Bloch wall as a function of its
crystallographic orientation was calculated on the basis of a formula derived first by Néel
[5]. However, the considerations of the 90°, 71° and 109° Bloch walls were restricted to the
angle @. It is easily seen that a periodic domain structure constructed of that type of Bloch
walls would necessarily lead to the same polarization of all Bloch walls, as the rotation angle
¢ of the magnetization vector on passing through each wall is restricted to the interval
[0, @]. Thus, the rotation in successive walls alternates from a left-hand (g increases from
0 to @) to a right-hand one (¢ decreases from @ to 0).

It is well known from experiment that in typical ferromagnetic domain structures the
rotation of the magnetization vector occures in the same sense on passing from dornain
to domain, being either left-handed or right-handed throughout the crystal (or at least over
large regions containing many domains, see [6, 7]). As a result, the polarization of successive
Bloch walls is not the same, e. g., successive 180° Bloch walls have opposite polarizations.
1t is obvious that lattice sites of which the magnetization vectors have the same direction
correspond to rotation angles ¢-+2n 7, n =0, 41, +2, ... Therefore, for a given rotation
axis the energies of Bloch walls generated by the rotation on @ as well as on 22— @ should
be taken into account, which is equivalent to considering the energy of a rotation over 2.

We shall examine only the 90°, 71° and 109° Bloch wall classes. The 180° case is trivial
(for the bee as well as for the fee lattice) because the energies for the left-hand and right-
hand rotation are identical! (@ = @ for the whole class).

Our calculations are based on a uniform method developed by Zietek [8], which, in the
simplest approximation we use, corresponds to the phenomenological approach [9]. We take
into account only the isotropic exchange energy and the anisotropic magnetocrystalline
energy. Others factors, i. e., magnetostriction as well as surface phenomena are omitted.

Finally, it has to be pointed out that in evaluating the integrals we use the asymptotic
description of Bloch walls [9] instead of the periodic one [10], which for domain widths
of the order 102 cm leads to an error of less than 19, in calculating Bloch wall energies [11].

The integrals in our paper were evaluated numerically by Simpson’s Rule using an
electronic computer.

! As for the 90° case, the energy for the rotation on 2z — @ was also calculated by Graham {2], so the energy
corresponding to 27 can be obtained from this paper by simply summing the energies for @ and 2n—@.
However, for two reasons we decide to repeat those calculations. Firstly, the integrals in [2] were evaluated
graphically and, secondly, this evaluation was done for few domain wall orientations only.
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2. General assumptions

Following [8] we start with the formula for the average energy, %, of the crystal

h= S Zﬂ] {Pg+0}, (1
@
where
P §‘§ = A"‘5R23R£3, @)
()8 faﬂll 1\2 z \2 @ \4 a2 (R% )2
© Q% = Ko |2 +S5+ S'E [(Ris)*—(RE)* +(R%)* (R%)?] ¢, 3)
= R}, = &,5,6,8in ¢%-+6,, cas g*+¢,¢,(1—cos ¢%). (4)
- The particular forms (2) and (3) of P& and (% were derived in [12], [13], where in the
= spin operator Hamiltonian
—
E H = % {P.:ilaszlszz +Qz§llzﬂaﬂcszlsizsﬁssﬁc} (5)
-
§ the interaction tensors were chosen in the form
’_C: B )
> PZ:/‘I - Aaﬂaﬂx#z(l_éaﬁ)’ (6)
1

El:) Q;“ﬁlﬂzf‘sﬂc = 5 Kéqgé/‘l@':éﬂalh(l_éﬂxll()’ (7)
= the latter being matched in correspondence to the classical phenomenological anisotropy
S energy [12, 10]. Here and in the following, only the lower indices obeythe Einstein summa-
Q tion convention. The superscript &, § refer to the lattice sites, § denoting neighbours of the
A site «. The matrix RS, rotates the spin vector 5§ by an angle ¢ around an axis with direction
ECD cosines e,. £,,, is the antisymmetric unit pseudotensor, A% stands for the isotropic Heisen-
= berg exchange integral, and K is the ‘‘microscopic’ anisotropy constant (per atom; see [10]).
>, It has to be noted that Eq. (1) was derived under the assumption that the component S,
S of the spin vector be diagonal, with S as the maximum spin eigenvalue,
N As we shall take into consideration the interactions with the nearest neighbours only,
= g i A% — 4
& we can put in (2) = A.
O The matrix Rf, is quite general i. e., it describes an arbitrary rotation, and two of the
<

three direction cosines e, are independent parameters. In our further calculations the rota-
tion axis will be assumed to lie on a fixed plane, which reduces the number of independent
parameters e, to one that describes the position of the rotation axis in the plane.

3. The 90° Bloch wall class in the bcc lattice

We considere a periodic domain structure in which the direction of the magnetization
vectors in adjacent domains differs by an angle 90°. This structure can be obtained by
putting @ ||[001] and b[|[100]. By choosing the coordinate system as shown in Fig. 3 we
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have for the direction cosines e,

== @q = —= COS Y, €y = sin .

Here v is an angle between the rotation axis and the (010) plane.

X3 | Joo1]

 [o0]
X

xy & 100}
Fig. 3. Elementary cube of the bec lattice (8 =1,2, ... 8)

Hence, the elements R%; of the rotation matrix have the form

. 1 X
RT3 = sin y sin ¢% + 5 cos® y(l—cos ¢%),

1 . 1 .
Ris = — —= C0s Y sin g%+ —= cos ysin Y (1—cos ¢%),

V2 V2

1
R33 = cos ¢* + 5 cos? y (1—cos p%).

From (2) it then follows

8

8
~ 1
Z P =4 [4 cos? y + (1 —3 cos? y;) Z oS ((p'g—tp”‘)] .

B=1 =1

963

(8)

©)

(10)

Following the usual procedure [8, 12] we shall now express ¢ in terms of ¢® and its first
derivative. We assume the angle ¢® (or ¢°) to be identical for all lattice atoms lying in the
same plane perpendicular to the rotation axis. For a given rotation axis, the problem be-

comes one-dimensional and, in the first approximation of a Taylor series, we have

¢* = g +e,0l"

(1)
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where the dot above @% denotes differentiation with respect to a variable & taken along
the rotation axis, and gf, the components of the space vector pointing from any atom «
to its nearest neighbour . Then, expanding cos (eugﬁ<}5“) in a series with respect to e,0%¢"
we get in the second order approximation

~ 1 1 .
S2 Z ng =8 452 (5 - Z cos? 'IP) S24 ((pa)z Z (eﬂgz)z
8 B

1 .
=8 452— (1—— 5 cos? 1/)) S2Aa? (p%)2 (12)
In the last step we made use of Eq. (I.4) derived in Appendix I. Denoting
1
(E cos? zp-l) S24a? = U, (13)

the Eq. (12) can be rewritten as
$2 3 P# = 8452+ Uy(g%)2. (14)
g
By using Egs. (3) and (9) we obtain
52 0% = C—V, sin ¢®—V, sin 29—V sin 3¢%— V, sin 4¢*—
— U, cos ¢*— U, cos 2¢%—Uj cos 3¢*— U, cos 4¢%, (15)

the coefficients 7, ... U, are given in Appendix Il and C is a constant (depending on y)
which is of no importance in our further calculations and need not be specified here.
According to Eq. (III. 8) derived in Appendix III the energy per cm? of the 90° Bloch

walls is given by the expression
2
g = 0, V4—2 cos? P f [—v, sin ¢g—v, sin 2@ —wvy sin 3p—
0

— v, sin 4@ — 1, COS P— Uy €08 29— Uy cOs 3@ —1uy €08 4@+ Uy +ug+ug+u,de,  (16)

where
1 -
Gy = 252 (s— 5) a-t)— 4K, 17

and

2

1\2 1
v; = V,[KS? (5— 5) ., u; = UJKS (s— 5) :

(i=1,23,4). (18)
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The integral in Eq. (16) was calculated numerically for y changing by 1° from 0° to 90°
The results are given by the curve oo, (relative energy) in Fig. 4.

s _g
0 cos¥ g
do
41—
1 1 1 1 1 1 1 1
o° 30° 60° 90°
—
v

Fig. 4. Relative 90° Bloch walls energy per unit area a/o, and total Bloch walls energy o/, cos  vs Bloch
walls orientation

4. The 71° and 109° Bloch wall classes in the fec lattice

To generate these classes of walls one should start from a direction of the type (111}
and, as formula (1) has been derived under the assumption that the initial direction of
quantization of the spin operators coincides with the x;-axis, a coordinate system in which
the xg-axis coincides with, say, the [111] direction has to be chosen. However, the form of
the anisotropy tensor Q;‘f ausn, 10 (7) corresponds to a coordinate system whose axes coincide
with the [100], [010], and [001] crystallographic directions.

This difficulty can be overcome and the coordinate system indicated in Fig. 5 still
used when, as shown in [12], the uniform rotation

V3 V3+1 V3—-1 2
(V) = "¢ V3—1 V3+1 —2 (19)
—2 2 2

by which all the spins are rotated towards the crystallographic direction [111] is performed
before applying the non-uniform transformation (4).
The total transformation W, is thus

Wa = RiaVis (20)

and, in order to calculate the quantities P and 0% in Eq. (1), one has now to exchange
R% for Wk in Eqs. (2) and (3).
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Fig. 5. Elementary cube of the fee lattice (f = 1,2, ..., 12). White circles indicate the nearest neighbours

4.1. The 71° Bloch wall class
When starting from the direction [111] one has @ || [111] and, say, b || [111]. For the

coordinate system shown in Fig. 5 we have for the direction cosines e,

= ! (cos p+siny), e, = L (sin p—cos p)

€y = —= (\CO0Ss B = —= {SIN Y—CO0S 5

TG 2T y2

eg =0, (21)

where u is the angle between the rotation axis and the direction [110].
By use of Eqs (4), (19), (20) and (21) we have

1
Wiy = ﬁ [cos? p +cos y sin p +(sin®p—sin p cos ) cos ¢*+
+ = (sin p—cos y) sin ¢<]
— (sin p— sin 2],
V3 ¥ L4 @

1
W = V—g [—cos? w-+sin g cos p—(sin? p +sin g cos p) cos g* —

1 (sin  4-cos y) sin ¢7
vz Y Y 7l
« 1 . .
Wi = —Vg [—V2 sin o sin ¢*+cos ¢7|. (22)

From (2) and (22) we have

~ 1
Z P# =4 [4:-0—4 cos 2y + £ (2—cos 2yp) Z cos ('p5—¢“):| (23)
8 B
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and, following the procedure of Sec. 3, we finally obtain
523 PE = 12452+ U*(¢Y?, (24)
8
where

1
Uy = 3 (cos 29p—2) AS2%a2. (25)

Inserting (22) in (3) one gets for S2 Q0% the formula identical with that given by Eq. (15)
with the coefficients V] ... U, defined in Appendix IV and a constant € (depending on )

which need not be specified here.
Using Eq. (III. 8) we have for the energy of the 71° Bloch walls.

g =0, | / % (2—cos 2p)

4+, sin 4p+u, cos @+ uy cos 2@+ uy cos 3@ +uy cos dp—uy—uy—uz—u,|% dp  (26)

27
f [+, sin ¢ 4, sin 2¢ + vy sin 3p +
]

where
1
gy = 452 (S—— E) a2V AK. 27

For v; and u; Eqs (18) still hold, with V... U; from Appendix IV.

d
docOS ¥

Oe° 30° 60° 900

Fig. 6. Relative 71° Bloch walls energy per unit area g/d, and total Bloch walls energy 6/0, cos y vs Bloch
walls orientation y

The integral in Eq. (26) was calculated numerically for ¢ changing by 1° from 0° to 90°.
The results are given by the curve /o, in Fig. 6.
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4.2. The 109° Bloch wall class

For this class we have @ |{[111] and b || [I11}. The direction cosines of the rotation axis
are now

€ = €y = — 7 sin ¢, e; = cos y. (28)

From Eqs (28) it is easy to see that the rotation axis is lying in the (110) plane, v being
the angle between the rotation axis and the [001] direction.
Using Eqs (4), (19), (20) and (28) we have

1 . . 5 .

W = ]76 [— sin y cos p+(/2+sin p cos y) cos ¢=4-(/2 cos y—sin ) sin ¢?},
1

W = ]/—6 [—sin y cos p—()/2—sin p cos y) cos g=+(/2 cos p+sin ) sin ¢%],

Was = 1-/% [cos? p+ sin?  cos g%+ /2 sin y sin ¢9. (29)
From Egs (2) and (29) one has
- 1 .
Z P# =4 [4 cos? p+ 3 {24sin?yp) Z €os (q)‘;_:p“)] , (30)
B
and, following the procedure from Sec. 3, we obtain
52 3 Pgf = 1245%+ Uy(g™)?, (31)
8
where
1 .
Uy= — 3 (24-sin? y) A5%a2 (32)

Inserting (29) in (3) one has for S2 0% the Eq. (15) with the coefficients V; ... U, from
Appendix V.
The energy of the 109° Bloch walls, according to Eq. (III. 8), is thus

2n
G = Uo]/% (2+sin? ) f[-H)I sin y 4 v, sin 2y vy sin 3y +
0

+ vy sin 4@+ uy cos ptuy cos 2¢ +ug cos g+ 1y cos dp—

Uy U Uz ual%d(P (33)



Fasc. 6

Vol. XXXII (1967)

ACTA PHYSICA POLONICA

969

where the coefficients v; and u, are defined by Eqs (18) with ¥V ... U, from Appendix V,
and oy is given by Eq. (27).

The integral in Eq. (33) was calculated numerically for ¢ changing by 1° from 0° to
90°. The results are given by the curve g/o, in Fig. 7.

O° 30° 60° 90°

Fig. 7. Relative 109° Bloch walls energy per unit area ¢/o;, and total Bloch walls energy o/o, cosy vs Bloch
walls orientation

Discusston of results

In determining the energetically most favourable Bloch walls within each class, one
should minimize the total energy of the Bloch walls rather than the mere energy density o.
This problem, however, is generally insoluble, as the surface area of a Bloch wall depends
in a quite complicated way on the type of the domain structure which, in turn, is determined
by the shape and crystallographic orientation of the crystal. Even if neglecting surface
effects (closure domains, demagnetizing field produced by free magnetic poles on the crystal
surface, ctc.) and restricting the considerations to the main domains inside the crystal,
there is still the difficult problem of passing from one domain structure to another, which
seldom can be achieved within the same Bloch wall class. Besides, the domain width should
actually be includet (as a minimizing parameter) in the considerations, since it is the mini-
mum energy of the entire domain structure rather than of any particular Bloch wall which
is relevant to the problem of stability. Hence, considerations of the type carried through
in [1], [2], [3] are necessarily of limited validity, as none of the factors mentioned above is
accounted for in the calculations. None the less, we shall show that even within these limita-
tions the resulis depend essentially upon whether or not the polarization is assumed to be
the same for all Bloch walls.

Following [2], [3], let us consider three particular cases of minimizing the total Bloch
wall energy corresponding to the three Bloch wall classes examined in the present paper.
Assume the plate-like sample to be cut parallel to the (010) or (110) plane, respectively for
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the bee or fec lattice. Assume further a pericdic domain structure whose (plate-like) domains
are magnetized alternately in the directions [001], [100] for the bec sample, and [111],
[11I1] or [1T1], [111] for the fcc sample. As these directions are perpendicular to the crystal
axes [010] and [110], respectively, the domains produce no magnetic poles on the upper
and lower surfaces of the respective samples (poles produced on lateral surfaces are neg-
lected, the sample being assumed to be sufficiently thin). The Bloch walls of these domain
structures belong respectively to the 90°, 71° and 109° Bloch wall classes. For w = 0, the
walls are perpendicular to the plane of the sample, their surface area D, (assumed to be the

(010] tor bec

[10] for fcc ) )
[} Rotation axis

|
!
|
1
i

¥ Crystat

Bloch wall

Fig. 8. Position of the Bloch wall of one of the considering classes in the plate-like crystal sample

same for all Bloch walls) being smallest. The corresponding surface area D for any v is thus
D = Dyfcos y (see Fig. 8). Since in this simple model the total energy of the domain struc-
ture is simply the sum of the total energies of the Bloch walls, the problem reduces to mini-
mizing the quantity ¢ D or, equivalently, the relative energy

sD o
ooDy ogcosy’

(34)

the angle  being the only minimizing parameter. The curves for this expression correspond-
ing to the three Bloch wall classes are drawn in Figs. 4, 6 and 7.

When comparing these curves with those obtained in {2}, [3] for identically polarized
Bloch walls, one sees that in our case all minima correspond to y = 0°. Thus, the energetic-
ally most favoured Bloch walls appear to be those which are perpendicular to the plane of the
sample, i. e., to the (010) and (110) planes for the bee and fec lattice respectively. Since
v = 0° implies @ = 27— @ = 7, the magnetization vectors of all the domains lie symme-
trically on the rotation cone.

The difference between our results and those obtained in {2], [3] is apparently due to
the fact that ¢ as used in [2], [3] is the energy (per cm?) of a single Bloch wall for a rotation
of the magnetization vector from ¢ = 0 to ¢ = @ (or vice versa), and that the periodic
domain structure is composed of such walls only, whereas in our case ¢ is the energy of
all walls that may occur for ¢ changing from 0 to 27z, Since both approaches leads to different
results (y # 0 and @ < & was obtained in [2], [3]), it is a matter of experimental evidence
in providing the justification for the applicability of either model.

Strangely enough, both approaches seem to have experimental support. In [2], 90°
Bloch walls have been observed (in iron whiskers) which were not perpendicular to the (010)
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surface of the sample (yp = 23°), although no similar experimental evidence is known for
71° and 109° Bloch walls in fee erystals. On the other hand, it is a rather well established
fact that, at least in bulk materials, the 90°, 71° and 109° Bloch walls are usually perpendic-
ular to the (010) or (110) crystal surfaces {(e. g., [14], [15], [16]). Furthermore, there is
a number of papers in which the polarization of Bloch walls in various domain structures
has been examined and found to alternate from wall to wall (e. g., [17], [18], [6]), which calls
for the definition of ¢ as used in our paper. It would thus seem that our approach is appli-
cable to the typical domain structure as usually observed in ferromagnets, in which the
magnetization vector on passing through Bloch walls rotates in the same sense (screw-like)
throughout the crystal, while the model studied in [2], [3] describes quite particular
domain structures that may occur in specific samples and/or under specific conditions
(small or thin erystals of particular shape and crystallographic orientation, local irregula-
rities in domain structures in large crystals, ete.).

There appears to be an additional relative minimum for the 71° Bloch walls, for y = 35°
(see Fig. 6}, which corresponds to a wall inclined at an angle 55° to the (110) crystal surface.
Walls of that type have not yet been observed, probably because of their poor stability (weak
minimum).

The authors wish to express their sincere gratitude to Dr W. Zigtek of the University
of Wroclaw for his encouragement and valuable suggestions in the preparation of the
paper.

APPENDIX I

In calculating Eq. (12) one has to evaluate the sum
D (e,00)? (L1)
B

where e, are direction cosines of the rotation axis and o denotes the u-component of the
space vector pointing from a given lattice site to its neighbour g in the bee or fee lattice.
As e,0% is a scalar product, the sum (I.1) should not depend on how one fixes the co-
ordinate system. Let us fix the coordinate system as in Figs 3 and 5 for the bee and the fee
respectively.
The sum can be written in the form

2 (el =&t 3 ()2 +e} ﬁZ (09)*+e5 D (@) +
B 8 g
+2ey6, ﬁz 0i05+2e,e, ; 0l0h+2e,eq x 0505 (1.2)
B

and the sums over § can be carried out for both the bee and fee lattice. According to Figs. 3
and 5 we have in both cases

Z Qﬁgf = 9, 2a* (1.3)
B

where a is the lattice constant.
2 _

Since e,

1, we obtain finally
% (e,00)? = 2a? (1.4)

for any rotation axis.
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APPENDIX TI

The coefficients V5 ... U, used in Sec. 3 are as follows

V, = KS? S—lz“ 2 i—2 2 +21 4

L= 5| sinycos?y | o cos?y+ = costy [,
V., — KS2 g_lzq' 2 _l+i 2 21
= S— 5| sinycos?y 4 Ty costy— qg costy |,

1\® 1
Ve= KS? (S— §> sin y cos? p [— 7 126 00541,0],
V—KS‘Z(Sflzd L L ey 3 osty]
L= 5| sinycos?y g g cos®y— sz costyl,

’ 2
U, = KS? (S— %) cos? yp [Z — 14—1 cos? p+ 23 cost 2L cos ws] ,

1\* 1 1 5 3
—Ks2 (s— 2 2 4 6
U, =KS (S 2) cos 1p|:4+4coszp 16 €O Y g cos lp],
11 1 1 3
=KS2|S— =) |2 — = cos? 5 ot .
U, S (S 2) [8 1 cos p+ g o8 w+ Tog ¢ zp]

APPENDIX 111
For the average energy (1) we have, according to (14), (15), (24) and (31), for all Bloch

wall classes considered in this paper the general form

h=C'+ ) {Ug(g®)2—T7 sin ¢*—V, sin 29—V sin 3¢*—
a

—Vy sin 4¢*— U] cos ¢%— U, cos 2¢%— Uj cos 3¢™— U, cos 4¢%}, (IIL.1)

the constant ¢’ being immaterial for further considerations.
When passing to a continuous variable one has to replace the sum over a in (III.1)
by an integral

Z —>ma3D f d& (I1L.2)
@ L

where L is the length of the crystal in the & direction and D the surface area (assumed to be
constant) of the crystal’s cross-section perpendicular to the &-axis (i. e., to the rotation axis).
The coefficient m in formula (II1.2) is equal to the number of lattice atoms in the elementary
cube of the crystal lattice (m = 2 for the bec and m = 4 for the fce lattice).
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The functional which we obtain for the average energy % of the crystal has thus the
form

hig] = C'+ma=3D [ {Uyp?—V, sin p—V, sin 29—V, sin 3p—
L
—Vy sin dp— U, cos ¢p—U, cos 29— U; cos 3p— U cos 4¢} dE. (I11.3)
The constant C" and the coefficients Uy, V;, ... Uy depend only on ¢ (choice of rotation

axis).
Following the usual variational procedure we arrive at the first order differential equa-

tion
@ = fl— {—V, sin g—V, sin 29—V, sin 3p—V, sint p—
0
—Uj cos o— U, cos 29— Uj cos 39— Uy cos 4 ¢} +const, (11L.4)
We demand ¢2 > 0 for all angles @ (real solutions for all g). This is fulfilled for
const > —5_—0 {U+ U+ U+ Uy (111.5)

because in our case ¢ = 0 corresponds always to an easy direction and, consequently, to
an absolnte minimum for (II1.3) as well as for the right-hand side of Eq. (II1.4)2.
Choosing the equality sign in Eq. (I1L.5) we get the asymptotic description of Bloch
walls:
. 1 .
@? = NN [V, sin ¢—V, sin 29— V5 sin 39—V sin 4gp— U, cos ¢ —
0

— U, cos 29— Uj cos 39— Uy cos 4 + U, + U+ Uz +- Uy). (111.6)
The surface energy density of the Bloch is usually defined as
o = (h,—ho)[D (HL7)

where /1, is the energy evaluated by inserting the solution of the variational principle into
the functional (II1.3), and A, the energy obtained by taking in the functional ¢ and ¢ for
the easy directions.

By using Eqs (II1.3), (IIL.6) and (II1.7) we obtain

P2
¢ =2ma3 V_[Z;j [—Visin o—V, sin 29—V, sin 3p— V) sin dp—
P1

—Uj cos ¢— U, cos 29— U, cos 3¢p— U, cos 4+ Uy + Uy + Uy + U) edg {111.8)

where for a given (single) Bloch wall the integration limits should be matched in conformity
with the boundary conditions for Eq. (I11.4). When calculating the sum of the energy densi-
ties for all Bloch walls contained in the interval 277, which is the case of the present paper,
@, can be chosen quite arbitrarily provided @, = @, +2x. For simplicity we put ¢, = 0,
@, = 27

2 This can be shown without referring to any physical arguments by examining maxima and mi-
nima of the form (3).
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APPENDIX IV

The coefficients V7, ..., U; used in Sec. 4.1 are defined by the formulae:
1 1\* . . :
V= — ry Ks2|S— 5 [sin ¥—10 sin® & +23 sin® ¥—
—14 sin” &+ cos 3—10 cos® ¥ +23 cos® #—14 cos? F],
1 1\ : :
Vo= — 9 KS2|1S— 5 [10 sin3 9 —24 sin® # 414 sin? ¢+
+ 10 cos®¢ — 24 cos® + 14 cos™d],

2
Vy= — %Ksz (5— %) [sin 9—6 sin? #+11 sin® §—

—6 sin” @+ cos #—6 cos?d ¢+11 cos® $—6 cos? 9],

9 2
— cos 842 cos® #—2 cos® § +cos? 9],

U = — % KS2 (S— %)[7 sin? #—35 sin% ¥ +56 sin® J—

2
Vy=— L K5? S~-~L [—sin & +2 sin3 ¢ —2 sin® & 4-sin” §—
a

—28 sind § +sin ¢ cos & (1—4 sin? ¢ 44 sin® 9)],

2
Uy = — é KS$? (S— %) {14 cost #—28 cos® &+ 14 cos® §—4 sin3 & cos® 9],

2
U = — é— K52 (S — %) [sin? ¢—5 sin* 48 sin® & —

—4 sin® §+sin J cos § (—1+4 sin2 §--4 sint 9)],

2
Uy = — 11_8 KS? (S— %) [—2 sin? ¢+ 3 sin? 9—2 sin® 9+
+sin® ¢+ 1+4sin & cos & (2—2 sin? ¢ 42 sint H)],

where ¢ = p—a/f4.

APPENDIX V

The coefficients V7, ... U, used in Sec. 4.2 are as follows:

1 1\2 29 . 21 . ]
V= ——=KS2[S— _ w2 sind w — — sinfyp4+ 2 sin"y |,
1 9V2 ( 2) [2smzp +2sindyp 9 1Y 5 LY
1

_ 2 1Y’ in? ind p— 2L gin?
Vo= ——KS S-——E —4 sin® p+-13 sin w—?smtp ,

9V2
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2
Vy= — L K52 <S— %) [2 sin p—2 sin® yp — %sin"’zp—l— 2 sin71p:|,

912 2

2
Vy= — _.—KS2 (S~ % [——2 sin p+3sindy + %sinﬂu— i_ sin“p]

92

M|»—-n

29 21
U, = — % KS? ( [51112 p+sint p— e sin® ¢+ T sin® 1,0] »

17 21
U,= — —é KSs2 (S— —~) [2 sin? p— ——s1n4tp+ 7ls,in6 Y= g5 sin® 1/)] ,

Fasc. 6
—

1 1 3
Ug= — ) KS? ( [3 sin? p +sint y— T9 sin® o + 7 sin® w:l

1 5 3 .
U= — %KS2 ( — l) [5 —2sin? p+ s sin? i +sinf p— 3—251n8 1/)] .
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