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DIFFRACTION OF ELECTROMAGNETIC DIPOLE RADIATION BY AN
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(Received April 19, 1967)

The paper presents a solution to the problem of diffraction of electromagnetic waves from
an electric dipole by an ideally-conducting wedge. This problem has already been studied by
Y. Nomura (1952) and R. Teisseyre (1955). The method used in this paper was developed by
J. Petykiewicz (1967) who was the first to apply it in solving the problem of diffraction of scalar
multipole radiation by a wedge. Compared with the methods applied by the two authors first
mentioned, it is much simpler and leads directly to the solution. Taking the wedge divergence
angle y = 27 gives the solution to the problem of diffraction of electromagnetic waves in the
case of an ideally-conducting half-plane.

1. Introduction

To describe the problem we use the cylindrical system of coordinates in which the
z-axis is the diffracting edge and the half-planes ¢ = 0 and ¢ = y are the surfaces limiting
the wedge. We assume that at the point L(p, p,, z,) there is a radiating dipole, and
point P(r, ¢, 2) is the point of observation (Fig. 1). Sometimes we shall write the components
of the vectors in the Cartesian system, with the axes directed as shown in Fig. 1.

In unlimited space we assume the Hertz vector for the dipole in the form:

o —i(kR~ui)

U=uw—p

where 2 is the unit vector along the direction of the dipole axis, and

R = Vr2-|—g2+(2——z0)2~2r9 cos (p—qp) is the distance between the points L and P. The
electric and magnetic fields are expressed in the familar way:

E = grad, div, U+Fu = B(R)(uR)+u[4(R) + 2f(R)].
H = i curl, U = ik [Rxu] A(R) (1.1)
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Fig. 1.

where
R, = rcos g—g cos @y, R, = rsin g—p sin @y, R, = z—z,

e— kR

d
SR =S AR = 5 2 (B, BR) = & 2 AR,

|

The time factor ¢ has been omitted everywhere.
The components of the field in the cylindrical coordinate system are expressed as
follows:

E, = (uR) B(R) [r—¢ cos (p—g0)] +[A(R) + Ff(R)] (x, cos ¢+, sin g),
E, = (uR) B(R) g sin (p—gy) +[A(R) +FAR)] (1, cos p—u, sin ¢),
E, = (uR) B(R) (z—z,) +u[A(R) + k2f(R)].
H, = ik A(R) [0 sin (p—gp)— (—2) (1, cos g—u, sin ¢)], (1.2)
H, = —ik A(R) {1, [r—e cos (p—go)]— (z—2) (1, cos p-+u, sin g)},
H, = ik A(R) [u,(r cos p—g cos go) —u, (7 sin p—p sin g,)].

In the Carslaw-Sommerfeld method, commonly applied in solving the scalar Sommer-
feld problem, the procedure is as follows:

a. Instead of ordinary three-dimensional space we introduce an infinite number of
diplicates of Riemann space in which the z-axis becomes the branching line, wherein the
region 0 < @ < x, —00 <z < 400 is known as the physical region.
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Fig. 2. The e-plane, a:' , &, are the branch points, R, = 2—i—gz+(z zg)2—2rg cos (p—¢) . The cross-hatched
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regions correspond to the 1-st quarter on the R -plane in the first sheet (the 3-rd in the second). The plain regions
correspond to the 4-th quarter (2-nd in the second sheet)

b. In the expressions of the type in Eq. {1.2), the angle g, is substituted by @ and they
are then multiplied by the function @, (¢ — @) possessing poles at the points & = @o+2my
(m = 0,4+1,42...), and integrated over the paths B, and B, which are on the first of the
double-sheeted Riemann surface of the complex variable & (Fig. 2). In this way we find
a new solution, which we write as ur{r, @, 2, 0, ¥4, 24> X)-

%
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c. The integration path B;+ B, can be transformed in a continuous manner into the
paths €, and C, and circles around the poles gy+2my, if they are within the region
g—a < gy+2my < ¢+xn (Fig. 3). Integration over C; and C, gives the diffraction field
whereas the circles around the poles provide contributions, which should be expected in
accordance with the laws of geometrical optics, from the sources L, (o, ¢o+2my, z,), of
which only I is in the physical space.

d. From the solution u;(r, @, 2, 0, @y, 24, ) obtained in this manner (in the scalar
problem this is the solution of the equation of vibrations}, we subtract the solution u,.(r, @, 5,
0, Pps Zg+ X)» Obtained identically, but representing the radiation from the source L’
which is the image of L in the half-plane ¢ = 0. This difference is the solution to the dif-
fraction problem in the case of the boundary condition u; —u;. =0 for ¢ = 0 and ¢ == .

In our case this procedure would give a solution to Maxwell’s equations, but it would
not satisfy the fundamental Meixner condition for diffraction problems. The method just
outlined must be modified somewhat in order to be able to give the correct solution.

2. Solution of the problem of diffraction of electromagnetic dipole radiation by a wedge

The method of Petykiewicz, which we shall apply for finding the solution to Maxwell’s
equations, differs from the Carslaw-Sommerfeld method only by the use of the substitution
@ — ¢ +@o—a instead of the transformation ¢, —a. In the scalar problem, when we are
dealing with an isotropic point source, the two methods give identical results. In the case
of vector fields the character of the substitution dictates the use of the field components
in the cylindrical reference system. The new solution to Maxwell’s equations obtained from

Eq. (1.2), therefore, will have the form:

o = 51; f {(uR)BL(R)[r— ¢ cos (g —a)] +

B, B,
+[A(R) + kY (Ra)] [ux cos (p+go—a) +uy sin (¢ +@y—a)]} Pajp(a—go)da
g = -31; / {(uR)B(Rq)e sin (p—a) -+
B,YB,
[A(Ra) +E(Ro)] luy cos (¢ +@o—a) =y sin (¢ +@y—a)]} Pujla—go)da
— QL f{(uRa)B(R,,)(z—zo)+uz[A(R¢)—l—k2f(Ra)]} Dy la—@ode 2.0
* B+B,
hy = —é% .[A(Ra){uzg sin (p—a)—
B, $B,

—(e—2g)[tty cos (¢ +Fo—a) — 1y sin (¢4 @o—a)|} Pape(a—go)dx

'k
he = — ~217 AR uz[r—o cos (p—a)|—
'Bx':Bz

—(g—zg)[ux cos (¢ +@y—a) +uy sin (¢ +@o—a)]} Pa(@—golda
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he =5, | ARHuslr cos (g +go—a)— cos gol —
B,+B,

U7 sin (¢ -+ @o—a) —@ sin @o]} Prya—po)da

where

R, = Vr2+92+(z—zo)2—»2rg cos {p—a)

1
Dopy(@—g) = ——

7t
i~ (py—a)
l1—e =

and the components of the vector R, in the Cartesian system of coordinates are:
R = rcos (p+@o—a)—0 cos @y, R, = r5in (¢+@g—a)—e sin ¢y, R,, = 7—7,

To have our solution (2.1) in the simplest possible form we now perform some transfor-
mations. First, we rewrite the e, component, Eq. (2.1), for example, in a somewhat changed
form:

1 .
“ =3, j ({uelr cos (p—a)—po] +ug,  sin (p—a) +u.(z—20)}B(Ra) [r—g cos (p—a)] +
B,+B,
+[A(Ra) +E*(Ra)][ue cos (p—a) +ug, sin (p—a)]) Dajy(a—go)de
where:
Uy = Uy COS Qo+, SIN @, Uy = — U, SiN @y +u, COS @y,
Let us also note that:

wgrady [ f(RY®upla—go)da = [ ued(R)o—r cos (p—a)]) Pl —po)dac-+

B,+8B, B,+B,

+ f u:O S(R2) %% q’ﬂ;’z(“-‘po)d““‘j uz A(R)(z—2¢) Pupp( @~ pg)da.
B, +B, B,+B,

We now make usc of the relation /9g, @, (a—g¢,) = —3/dx D, (a—p,) and integrate

the second term of the right-band side by parts, and after considering that the expression

Uy [(R,) D, (a—qg)/o vanishes at the ends of the paths B; and By, being in infinity, we get :

u gradL f f(Ru) Qn/x(“~¢0) d“

B,+B,
= f AR, {u,lo—r cos (p—a)] —u, r sin (p—a)—u,(z—2z0)} D, (a—qpy) doe  (2.2)
B.+B,

On the basis of Eq. (2.2) we easily get for e:

1 2 ‘
— 5} ~é)—r (u gradLff(Rw)én/x(‘x"_(pO)d“) +

By +B,

Cyp ==

k2
+ 57 [f(Ru) [g cos (p—a) +ug, sin (9— )| Py (d—pg)da.
B}B,
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Similar transformation in the expressions for the other field components yield:

e(u,r, g, z, 0, g, 59, X) = — 2i grad, (u grady, /‘f(Rz)¢ﬂ/x(‘x'_(p0)d“) +
x B, +B,
52
+ g [Cf(Ru)¢n/x(“—¢o)d“
B,YB,
h(u,r, @, z, 9, g, 295 X) = % Curlpfo(Rz)Qn/x(“—‘Po)d“- (2.3)
B;+B,

where the components of the vector C in the chosen cylindrical and Cartesian systems of
coordinates will have the form:

C, = u, cos (p—a) +u, sin (p—a), C, = u, cos (p—a)—u, sin (p—a), C, = u,

C, = u, cos (po—a) +u, sin (py—a) C, = u, cos (po—a)—u, sin (pg—a), C, = u,

We can get another form of the solution (2.3) which is simpler to interpret if we
notice that:
div, [ Cf(R,) @, la—gy) dax
B;+B,
— [ AR {ulr cos (p—a)— ]+, sin (p—a) +u,(:—20)} By (a—g0) da
B, +B;
Comparing this with Eq. (2.2) we immediately find

1 .
e(u’ T, ¥, 2, 05 Pos 20> X) = Ex_ (gradl’ dlvP +k2) fo(RG)¢"/Z(“—¢0)d“
B;+B;
ik
h(u,r, 9, 2, 0, o, 29, 1) = 9., curl, fo(Rz)¢n/x(“_¢0)d“ (2.4)
B,+B,
From Eqs (2.4) we see that we could find the solution (2.1) by introducing the Hertz
vector:

Z = -217 f Cf(Ry) Py — o) dex (2.5)
B, +B,
and differentiating it with respect to the coordinates of the observation point according
to Eq. (L.1).

In accordance with what has been said in Sec 1, (c), the solution of Egs (2.1), (2.3) and
(2.4) can be separated into two terms correspondingly representing the geometrical and
diffraction fields, if the integration paths B; and B, are transformed into circles around the
poles @,+2my (m = 0,4£1,42, ...) and the paths C; and C,. Then:

e= e+ ¢ (2.6)
h = hf +h?
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where the geometrical field is presented by the relationships:

= e—ikRy,
ef = (grad, div,+£?) Z cr TR Um (p). 27
fiad —ikR,,
hf = ik curl, Z Ccr ekR Um (@),

R, = Vrt+g2+(z—z)2—2r ¢ cos (¢—po—2my)
G = u, cos (p—@y—2my) +u,, sin (p—py—2my),
Cy = u, cos (p—@y—2my)—u, sin (p—@,—2my),
Cr=u,

1 for gy+2my—n< @y < @p+2my+m

v =
n(?) {O for ¢ < @y+2my—m or ¢ > @o+2my+x

The diffraction field is presented by the formulae:

el = -2—1— (grad, div, +k?) fC(Ra)(D,,/x(oc—(po)dOC,
% Ci+Cs
hé = % curlpfo(Ra)CDn/x(“_‘Po)d“- (2.8)
Cl+02

The solutions (2.3) and (2.4) of Maxwell’s equations are still not solutions of the diffrac-
tion problem. The latter, by virtue of Sec. 1, (d), will have the form:

£ = e, r, ¢, 2, 0, Pg> o> X)—e(u,’ T @, 2, 0, P Zp> %)
H = h(u, r, 9, z, 0, gq, Z9, 1) —h(W, 1, @, 7, 0, — @y, 295 %) (2.9)

where the second term on the right-hand side represents the field from the dipole %’, which
is the image of @ in the half-plane ¢ = 0.

The obtained solution (2.9) has all the properties that should be required of such solu-
tions, viz.

1. it is generally a regular solution of Maxwell’s equations everywhere in multiple-
sheeted Riemann space;

2. when the observation point P approaches the light source L it indicates singularity
of the required order;

3. ininfinity it satisfies the electromagnetic emission conditions and finiteness of Som-
merfeld ;

4. at both surfaces of the wedge, as it is an ideal conductor, the field components ¢, ¢,
and H, vanish;

5. the Meixner edge condition is satisfied.
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If we turn to Eq. (2.4), which represents the first term of the solution (2.9), then proving
that Maxwell’s equations are fulfilled is reduced to proving that the components of the Hertz
vector, Eq. (2.5), satisfy the wave equation. This fact is obvious, however, for in Eq. (2.5)
only f(R,) depends on the coordinates of the observation point. Regularity of the selution
is ensured in particular by the factor e=*Ra in the integrand of the integral in Eq. (2.1) and
by the position of the part of the integration path B, + B, which could give singularities, in the
fourth quarter of the R -plane, where the imaginary part of R, is negative. A singularity can
appear only when the branch pointsag and &g lie on the real axis & and, moreover, if at this
same point there is a pole ¢+2my. However, since (¢f. Rubinowicz 1966),

+(z—20)*

2,2
aF = @4iarc cosh otr 50

this can happen only when r —>p, z->zy and g—¢,4-2my, that is, when the observation point P
approaches the source L, {0, g5 +2my, z5). We have shown, therefore, that the condition
(2) for Eq. (2.4) is satisfied and, hence, it is also so for Eq. (2.9). Proof of the condition (3)
is presented in Appendix I with the use of the asymptotic expression for € and h? near to and
far from the shadow boundary, obtained in Sec. 3. Appendices II and IIl give the proofs
of the conditions (4) and (5).

3. Asymptotic expressions for the diffraction wave

For conciseness we shall consider only the first term of the general solution (2.9).
Taking advantage of Eq. (2.1) we shall present, for example, the component ef of the diffrac-
tion wave in the form:

a 1 " _
=T f{(uR,)B (Ra)lr—e cos (p—a) +
C,+C,

+[A*(Ra) + £ *(Ra)] [uxcos (¢ + Po—0) +uy sin (¢ + po—a)|}e*Re®Py (@ —gg)dat,

where:
1 1 ik 3 3k K2
* — * o o * — — — e
SR =g AR ( ) PRI- g

We shall look for the asymptotic expression for e? by the saddle-point method. Hence,
d

¢ in the form:

we write €

d 1

"L
Cx+Ca

eE@Dda

where:
gla) = —ikR_+In ({(uRz) B*(R,) [r—op cos (p—a)] +

+[A*(R,) +E2f*(R,)] [u, cos (p+@o—a) +u, sin (p+g,—a)]} P, (x—gy)).

x
In the function g(«), owing to large k, the largest contribution to the integral will be
from the term —ikR,, hence, we substitute the condition dg(a)/da = 0, from which the
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saddle-points.are to be found, by the condition dR,/dx = 0. They are then given by the
equation @ = ¢Fan (n =0, £1,42, ...). Proceeding similarly as in the scalar problem

of an isotropic spherical wave (Rubinowicz 1966), we find that the paths of steepest decrease
.

are determined by the equations a(s) = tpiFn-HeII and taking the saddle-point values
of all the functions of & except —ikR, that appear in g(a), yields for ¢ the asymptotic

expression:
;3 2
e s }/Zn T p— GikR,
e o~ = o B**(Ro)(r+0)—
21k [ EZ. “,—] VR
—[A**(RO) + k2] [ux cos gy +uy sin ggl},
where: '
=V(r+0)2+(z—29)% - Ry = [—(r+0) cos go,—(r+0) sin @, 2—3,]
1 ik 3 3ik k2
*x N BT % _ 2 o A

and for the other components:

2

eiInVi'f; siniﬂ— o—ikR,
¢ = 2 [A**(Rg) + k2][uy sin go—uy cos g,
27k [C‘Os — (@p—@g)— cos 7] 4 R V Aro
2
e17)/2m sin i -
¢t o VR‘ Vkro == {(UR) B**(Ry)(z—z0) + us[ A**(Ro) +2]}.
29k [cos —(p—g@y) —cos X]
:fn e 2
et Y2n sin ~- o ikR,
he X ——— A**(Ro) (s—2y) (ty cos g—ux sin gy (3.1)
9 o a2 | VR, VEro
4 COb;(q)-%)—C 7
5. 2
e 4 VZ; sin =- ik
B> — z A**(Ro)[uslr +0)+

kro

2y [cos % (cp-(po)—cos —

(= 2o) (ux €05 gy 1y sin )]

i—n — 2
¢ 1Y omsin T am
B~ .  _ A*%R Uy SIN Qg— Uy COS Py}
o~ - 2 VR VAm (Ro)( Po— Uy Po
29 | cos ~ (g—@q) —cos -
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As is seen, Eqs (3.1) for the field components assume infinite values at points placed
on any one of the shadow boundaries ¢ = @4+2my £ 7. This stems from the discontinuity
of the diffracted wave at the shadow boundary. They are correct, therefore, only for points
distant from the shadow boundary. For regions near these boundaries we must seek other
asymptotic approximations. We then introduce (Rubinowicz loc. ¢it) auxiliary function by
the operation

'd R

where:

R,, = V72 +*+(5—20)2—2rg cos (p—py—2my)

Application of the saddle-point method for e'?, integration within the limits+ oo to F,
and multiplication of the obtained expression by e"*Rm_vields for e near the shadow bound-
ary:

;4
L

e 4511—]/R —R,, e— "Ry,
d T

& =
1k V Ryro [cm " {(p— @) —cos %J

[(wRo)B**(Ry) (r+0)—

% (Ry—Rpp)

.7
—i =

—(A**(Rg) +k?) (uy cos @+ uy sin @g)] fe z2 dv.
4%
Introduction on the angle of diffraction v = @—(@q+2my+m) for the m-th shadow
boundary ¢ = @y+2my -7 and utilization of the fact that Vﬂm = 2{or/(Ry+R,)]"

Y
2

and R, = R,,

.Y
sin —
2

, with the assumption that for small p we can write ‘sin %‘ =

gives
i e—*R,
- = IR,

Similarly,

sgn y[(uRe) B**(Ro)(r +0) —[A™*(Ro) + k2] [u cos g+ uy sin gg}

d e—ikRo
o2 g, s LR 1 {1y cos gy in sin g

{(uRo)B**(Ry) (z-20) +usl4**(R) +£*]}

d ie —ikR, - .
hy =~ ORI SEnY A**(Ry) (z—20) (uy cos pg—us sin @)
0

je—tkR

e — S s AR Ll 1 0) 20 (e c05 g+ in )]

ie —ikR,
hz = 3R, — sgn YA**(Ry) (r+0) (ux sin @g—1, cos @g) (3.2)




Fasc. 6

Vol. XXXII (1967)

ACTA PHYSICA POLONICA

987

Formulae (3.2) shown that the diffraction wave near the m-th shadow boundary
@ = @o+2my+ has a value equal to half of the geometrical wave coming from the source
L, and that its phase undergoes a jump equal 7 at this boundary. This ensures the continuity
of the general solution in all points of space.

4. Diffraction of dipole radiation by a half-plane

The solution of the problem now under consideration can be obtained formally from
Eq. (2.9) by taking y = 2z. With the use of Eq. (2.3) and the field components in the Cartes-
ian system we have:
> 1 o R?
&= — T gradp | grady | f{Re) Pola—qgg)da ) + in af(R)D(a—qpg)da+

B,+B, B, +B,

+ 1 gradp (u' grady, ff(Ra) <D0(oc+(p0)doc> — % [af(Ra) D(a+pg)da  (4.1)

4./
B,+B; B, +B,
— Il:. ? A/ ’
U = i curlp | af(Ry)P(a-—pg)da— I curlp a' f(R)D o a+gg)da
B, 1B, B, 1B,
where:
1

PoaT @) = T —wmror
uw o= [u,, u;, u,] = [2,,—u,u.], as the image of vector @ in the half-plane ¢ = 0,
a = [a,. a,, a,] = [u, cos (po—a) +u, sin (gy—a), U, cos (py—a)—u, sin (pe—ox), 1)
@ = (@ ay, 4] = (] cos (py + @) —i, sin (gg-+a)s 1] cos (@o-+2) — 1, sin (g +2), ]

We now want to write Eq. {(4.1) in a somewhat different form.
For this, let us notice that:

11; f af(Ry) Dy —pg)da — p [ @ f(R)P(o + o) da

BB, Bl+Bz

u
== f SR Bof o~ )

Z' [f(R)¢(a +go)da+W

B,+B,
where the components of the vector W are given by the relations:
W 1 f_e_—"kR {ux[cos (po—a)—1] +uysin(pp—a)
x

“4n ] kR, 1— eitga— a2
B,+B,

ux[cos (py+0o)—1] +uy, sin (g +a)
- 1 e gt a)2 da
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L[ e [ foos (gy—a)—1] 1 sin (=)
= EE %R. 1— cileo—~aj2 -
B, B,

_ uy[l—cos(pg+a)] +uy sin (‘P0+“)} da
1—_eo—i@tBrR

W, =0

Simple trigonometrical conversions bring the component W, to the form:

i e~ kRy . ) . P o
—_ [ 10
W,= — yy fm——kRa l:ux (qm @oe®+2 sin 2 cos 5] —

B;+B,
— Uy (cos @p €*+2 cos (20 cos & —-1)] do

Since the integrand does not have any poles now, the paths of integration B, and B, can be
substituted by the paths C; and C,, while these, in turn, by the straight lines @ = ¢—n+v
and o = @-+nm-+iv. Then,

+o00
—ik Yr*+ ot +(z2—z,)'+2rg cosh v
W, = — lsing (uy cos%— u, sin %)f ¢ coshidv
n 2 2 2 e k V24024 (2—2z9)% +2rp cosh v 2

¢ sin (; (uy cos q;o —u, sin %0)
= HP (6 Vr+ o+ G2

kVrg
where H{® denotes the Hankel function of the second kind. Proceeding in like manner
with W, and taking advantage of the fact that W, = 0, we get for the vector W' the expres-

sion:
z(uy cos(%) — Uy sm%)) )
W =w H® EV(+0)?+(z—zy)
0 km 0 ( V( 9) ( 0) )
where:

. 4
w, = [sm % , ——COS E’O]

Solution (4.1) now takes the form:

&= ——%gradp (u grad; f f(Ra)@o(“—%)d“> R f S(Ra) By (a—p)do+

B +B, Bl+Bz

2) Dol +pg)da+W  (4.2)

1
+ ype gradp (u' grady. ff(Ra) d’o(“""%)‘“‘)

B:+B; B,+B,

W= 4~ curlp {u f SRYBo(a—go)da —’ f SRIBy(+po) da+4nW}

B.¥B, B,+B,
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The form of the solution (4.2) is identical with the solutions given previously by T. B. A.
Senior (1953) and B. D. Woods (1957). The main difficulty that these authors had to over-
come was to find such a solution which would satisfy the Maixner edge condition. For this
purpose, Senior expands the Hertz vector Z = we™*R[kR for the dipole into plane waves
and using the known Sommerfeld solutions for the plane waves he received by means of
rather complicated calculus a result which satisfied the necessary stipulations. Here, the edge
condition is satisfied because the solution for the plane wave satisfies it. B. D. Woods uses
the branched solution of the equation of vibrations for a Hertz vector, identical to the one
Senior used, and by differentiating it she obtains expressions for the E and H fields which,
however, do not satisfy the edge condition if the vector w is not parallel to the edge. In this
case, the authoress must look for a solution of Maxwell’s equations which should be added
to the previous one for the aggregate to have the required singularities at the edge. Using
Senior’s method, R. Teisseyre received a solution to the problem of dipole radiation diffrac-
tion by a wedge.

As is seen, Petykiewicz’s method gives the possibility of obtaiming results in agreement
with the above mentioned authors in a manner which is direct and moathematically quite
simple.

This paper had already been written when Professor W. Rubinowicz turned the author’s
attention to the paper by G. D. Maluzhinets and A. A. Tuzhilin (1962), which also presents
a solution to the problem of diffraction of electromagnetic dipole radiation by a wedge.
Very briefly, the method that they used consists in postulating the branching of the solu-
tion for a Hertz vector with an unknown vector function n(a), corresponding in our solu-
tion to the function C®,
integral equations.

The author expresses his gratitude to Professor W. Rubinowicz for comments and discus-
sion during work on this problem, and to Dr J. Petykiewicz also for making the results

(% EPo). The form of this function is obtained by solving three

of his work available.

APPENDIX 1

Proof of fulfilment of Sommerfeld’s condition

Sommerfeld’s condition of finiteness stipulates that

lim r E = finite (1.1)
lim r H = finite

On the other hand, the emission conditions necessitates:

limr (E+r*xH) =0 (1.2)
limr (H—r*XE) =0

where 7* denotes the propagation direction of the wave in infinity.
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We shall show that Eq. (2.4) and, hence, Eq. (2.9) fulfill these conditions. For this,
let us notice first that the so-called geometrical wave, Eq. (2.7), is ordinary dipole radiation
from the sources L (9, ¢o+2my, 3o) and as such it must satisfy Sommerfeld’s conditions.
All that remains to be proved, therefore, is that the diffracting field, Eq. (2.8), possesses the
same property. From the formula (3.1) for points distant from the shadow boundary we

have:
2
Ee' ) 2 sin 2»- _ikR,
limred = - X = ¢ —
o 2;{[60 2 (—po)—c 7| Vie
P s — (@—@g) —cos —
o ° x
2
ke ™Y 2n sin z- —ikR,
lim rhd = X _¢ d
r—oo JT 7'62 VIE
2y 1 cos = {p—pg)—cos —
X X ]
where:

¢, = 0,¢c, = u, singg—u, cos gq, ¢, = u,
d, =0,d, = —u,, d, = u, sin gy—u, cos ¢,

and, from Eq. (3.2), for points near the shadow boundary:

LeikR,
lim red = 62 sgn ye
L s>}
o —ikR,
lim rh? = ke sgn pd

Hence, the condition of finiteness is satisfied and, moreover, we see that at infinity the wave
travels in the direction of the unit vector &,. The condition (I.2) will thus assume the form:

lim r(e?+1i,xh%) =0
lim r(h?—i,x e?) = 0

and, because i, xd = —c¢ and 1,x ¢ = d, it is satisfied both near to and far from the shadow
boundary.

APPENDIX 11

Proof of fulfilment of boundary conditions

The boundary condition states that the components ¢,, ¢, and 9, of the general solu-
tion {2.9) must vanish at both surfaces of the wedge, ¢ = 0 and ¢ = y. We shall prove this
for the component ¢&,. Using Eq. (2.1) we have:

&= -2~1-x- [({ug[r cos (p—a) — ] -+ ug,r sin (p—a) +uz(z—z0) } B(Ra)[r—o cos (p—a)] +
B.+B,
+[A(Ra) + E(Ra)][ue cos (¢—a) +ug, sin (p—a)])Pryy(x—go)da—
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— 5}{ f({ué[r cos (¢p—a)—o] +up, sin (p—a) + us(z—20) }B(Ra)[r— g cos (p—a)| +
B, B

+ [A(Ra) + Ef(Ra)lu cos (p—a) -+ ug, sin (p—a)]) Dy (a+@o)da

For the hali-plane @ = 0 we have:

Crlp—o = ({tto[r cos a—p] —ug,r sin & +u(z—zg) }B(RY) [r—p cos o] +

1

27
B,+B;

+[A(RY) +F2A(RY)] (g cos a—ug, sin &)) Payy(a—pg)da—

- f({uz,[r €08 A— 0] — g1 cin &+ ug(z—z9) }B(RY)[r—p cos a] +
B,+B,

1 [A(RY) +E2A(RY)] (uh cos a—ul, sin @) Doyt +po)det I 1)

where

=V +02+(z—2g)%2—2rp cos &

Let us notice above all that:

u; = u, cos (+@,) —I—u; sin (—@q) = u, cos Po+u, sin gy = U, (11.2)
uéo = —u, sin (—@g) +u, cos (—@g) = u, sin Py—1u, cos Pg = —uy,
u, = u,
If in the second integral of Eq. (II.1} we now make the substitution & = —oa’, then at

the same time the path of integration B, will convert into B, and vice versa, as follows from

Fig. 2. Moreover, making use of Eq. (II.2) we receive:

Erlp=o = % /‘ ({uolr cos a—p] —ug,r sin a -+ uz(z—20) }B(RE)[r—@ cos a] +
X B:‘f‘Bz
+ [A(RY) +E2f(RD)] (g cos a— g, sin @) [Dajy(a—@y) -+ Py —a +@o)lda
where:

1 1

T ool T 1 _g—me—aiz 1

Dorjy(x—Po) + Dajy(— 2 + @) =

Hence, the integrand now does not have any poles and, therefore, the path B;+B,
can be exchanged by C;+C,:

1
Erlp—0 = o f {[ug(r cos a—Q)—ty,r sin & +u(z—z0) | B(RE)[r—p cos a] +
Ci+C,

+[AYRY) +E2f(RI)] [up cos a—uy, sina]} da
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This integral vanishes, however, for all the function of « appearing in the integrand have
a period of 27, whereas the paths C; and C, are shifted with respect to each other along the
real axis by 27 and integration along them runs in opposite directions.

In order to prove that &, vanishes at the half-plane ¢ = x suffice it to make the substi-
tution @’ = —a+2y in the second term of the expression &,|,_,, analogous to Eq. (IL.1),
and the proof proceeds as in the case just outlined. The proof that the components &,
and #,, vanish at both wedge surfaces is identical.

APPENDIX III

Proof of fulfilment of the edge condition

In order to see how the field components behave near the wedge edge, we shall find their
asymptotic ap proximations for small r with the use of the method applied by Franz in the scalar
problem of an isotropic spherical wave (¢f. Rubinowicz 1966). Let us notice that the branch

points of the «-plane, determined by the zeros of the function R, = Vr2 402+ (z—zg)2—

—2rp cos (p—a) are defined by:
ar = @+2nmtiby(n = 0,+1,+2, ...)
where b, is a real and positive root of the equation

r2teit (e—20)?

cosh b = 5o

These branch points shift towards infinity along the imaginary axis & when r — 0.
Each of the integration paths B, or B, can be deformed into a segment of length 27, parallel
to the real axis & and two half-rays, parallel to the imaginary axis, emerging from the ends
of that segment. They will pass to infinity when r — 0 along the imaginary axis &, together
with the points «F. Moreover, we can then assume that:

along the path B;:

1 .. . 1 .
cos (p—a) = 5 {eiv=a)—a | e—ilo—a)—a} ~ 5 ef@—a)ta;

sin (p—a) = % elte—®
along the path B,:

cos (p—a) = —;— e~ ip—a)

sin (p—a) = — 5126—"("‘“) (IT1.1)
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We then find the asymptotic approximation for small r for the component e, from Eqs (2.1)
and (IIL.1)

(P —a) ilp—a) . i(p—a)
e 5 f({ [re —‘9] + U, re__ZL_ +ug(z— Zo)} B(R2) [T— 9—8—2‘—] +

+ (AR + kAR ug—iug,) """"”) 1 da +

2 i P
Tog x @0m® Sy (omD

1 re—ie— ref—(g—a 1 " l pei— -
+ 5o ) ({”’g [—"—2—‘ - ] TUg, g7 +ug(z— ZO)I (RZ") [ 5 ] -+

.o e 1
+[A(RS") + KA (R (o + iug,) - da

2 4

I—e 7 @9 5 ¢-a)

where:

R; _ ‘/,2+92+(z_20)2_,9 JrCED)
RZ* — ]/,2+Q2+(z__zo)2__,98—i(¢—z)

In the integrals over the paths B; and B, we now take the appropriate substitutions:
6 = roel?® (I11.2a)
0 = roe '@ (I1L.2b)

The component e, can then be written as

1 ¢ o
o Sy o] ey i ]
U

) o 1 do
+[A(Rs) +E*(Ro)J(ug—iug,) Zé) EPR ' o +

1—¢'% "% ()

il oy il

A g 1 do
+ AR+ F2AR) (tp+itg,) —2;?) Ey— T (1I1.3)

1—

Ed
4

where

R, =Vr+0*+(z—20)*—0

With the substitutions (I111.2a) or (I11.2b) the branching half-rays in the a-plane, emerg-
ing from the points &y or ag , respectively, are transformed in the o -plane into a half-ray
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emerging from the point gy = r2-+0%4-(2—z,)? and running to infinity along the positive
real half-axis . To both paths B, and B, there corresponds a path U in the ¢-plane composed
of a circle around the point ¢ = 0 and two half-rays running to infinity on both sides of the
negative real half-axis o (Fig. 4).

Fig. 4. The o-plane, g, is the branch point of R, the dashed line in the branching half-ray

If we now counsider that for small r we can assume

o o
F— o — —
r r
ki 4 k14 . b4 F1 3
{—(@—9) — - = t—(p—9) — -
l—e g% (rp) *o=—e a* (rg) *
1 iZp—g) — =
= w2 lte T o % (rg)
T—(po—9) —— -
1% "6 g

we get for Eq. (II1.3)

I Za o Ug, sin (@ —q,)
ey —— (rg)* [({Zu cos (p— )(.—— ) i L il +
1, 0 | e cos (p—pa) {5, —0 o

+2u; cos (¢—%)} 0B(Ro)—[A(Ro) +F2f(Ro)] [ug cos (p—@o) + g, sin (<P—<Po)]) 22y

Ll O U _
" dyro [ ({u"(% ) 2ip sz z")} oB(Re)

U

gr

+[A4(Ro) + k2 (Ro)] (ue+ iu%)) do
The first integral cannot be calculated because the path U has inside it a branch point

n
of the factor ox, but it is independent of r. The integrand of the second integral does not
have any branch points inside U and the integration path is reduced to the circle around
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the point ¢ == 0, as the contributions from the half-rays cancel out. Moreover, since there
are no poles inside this circle, the integral vanishes in accordance with Cauchy’s theorem.

We see thus that near the edge the component E,, Eq. (2.9), will behave like r™/*~1,
Proceeding likewise with the remaining components we get

n

5
— =1 — —1
érer %r’\‘ rX
i F1
— =1 — =1
6¢~ rx C)’f‘pf\/ rx
id z
éz"’ r¥ %z_(c%z)rzo ~r%

1
The Meixner condition stipulates that the field energy density w = 8o (E2+ Y2
7

must be spatially integrable near the egde. The squares of the field components must have,

2
2o

therefore, singularities not stronger than r—2%, where @ <1. In our case we have w~r*
which ensures satisfaction of the postulated condition.
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