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POLARIZATION PARAMETERS AND RESONANCE DECAY
DISTRIBUTIONS IN HIGH-ENERGY TWO-BODY PROCESSES. I.
BARYON-BARYON COLLISIONS

By Z. GoraB aND A. KOTANSKI
Institute of Physics, Jagellonian University, Cracow™®
{Received May 8, 1967)

The cross sections, polarization parameters and resonance decay distributions for the
simplest types of two-body reactions are expressed in terms of independent transversity amplitu-
des. Crossing relations are explicitly written down for each type of process. lmplications of
discrete symmetries are taken into account. The case of a polarized target is also considered.
Finally, the discussion of the number of independent parameters, which can be found by per-
forming various measurements, is presented for each reaction.

1. Introduction

In the present paper we review the simplest tvpes of two-body high-energy reactions
and try to express various measurable quantities (as e. g. cross zections, polarization para-
meters, and resonance decay distributions) in terms of independent spin amplitudes. Possi-
ble experiments with the polarized target are also discussed. We think that this paper may
be regarded as the first step in the systematic phenomenological analysis of these processes.

We usge the transversity amplitudes throughout the work {(cf. Kotariski 1966a and b,
quoted respectively as 4 and B) and we find it rather convenient as the relations implied
by parity conservation, the transformation law from the centre-of-mass to the laboratory
frame, and especially the crossing telations are simpie in the transversity basis. On the
other hand, we do not need the partial-wave expansion which seems to be rather complicated
for transversity amplitudes.

In Sec. 2 we compile the general formulae 1o be used in next sections. Further on we
discuss the following types of reactions (the numbers are the spins of particles involved,
all parities are taken positive)
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The dizcussion of meson-barvon two-body reactions will be deal with in another paper.
For each reaction we write down

(i} the independent amplitudes which remain after taking parity conservation into account,

(i1} the s-t and s-u crossing relations,

(ii1) relations between the amplitudes due to discrete svimmetries other than parity (if
any exist),

(it) spin density matrices (simple and joint) for produced resonances,

(v) polarization parameters of =pin-1/2 particles,

(v} quantities enumerated under (fv) and (2}, but when the target is polarized. unless
the detailed expressions are too lengthy.
Finally, the number of independent real parameters (related to complex amplitudes)

which can be found by performing various measurements is given in each case. Unfortuna-

tely many of inreresting [‘mlarizzltion measurements cannot be perfnrme({ as vet.

2. Basic formulae and notation

We present here the general formulac which will be necessary in subsequent calcula-
tions. Seme of them were derived in our previous papers (A4 and B).
The transversity amplitudes for a two-body process g¢+¢ — b-+d are related to the
helicity amplitudes by the formula
7bd,ac = Z u*(sb)bb’u*(Sd)dd”‘)(ib'd'a'c'u(sa)a’au(sc)c'c (21)
primed
where @, b, ¢, d denote particle transversities, primed indices are helicities, s, is the spin of

particle A, and matrices u(s) are defined as

. a =x 7 iy
sty = D* R P (2.2)
Explicit forms of these matrices together with their symmetry properties can be found
in 4 or B.
We found it convenient to project the spins of antiparticles in the opposite direction
to those particles (¢f. B).
Therefore if there are any antiparticles in our process, we use in Eq. (2.1) u*(s) if the
antiparticle s comes in or us) if it goes out. Since

w(),p = €7uls), s, (2.3)

this means changing the sign of transversity of the antiparticle and a possible change of an
over-all phase-factor.!

! Even for bosons identical with their antiparticles the crossing relations are somewhat simplified if we
use the ‘‘antiparticle” convention for the transversity sign and over-all phase of the crossed particle.
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The spin-density matrices in the two bases are connected by the relation
()T — IL*QHM (2'4)
for a particle and, according to our convention, by the relation
of = ug™u* (2.5)

for antiparticles. This for instance the density matrices of a polarized spin-1/2 particle are

a1 <1¢P" Pr—ipPt
Q J—

5 \proipn 1 Ph) (helicity) (2.6)
and

=

) {(transversity). 2.9

r 1 [1+P: PrtiPt 1 [1+4P,iPe ™
T I \PE-iPl1-P!] T 2 \-iPé5 1-P,

Heve P, is the target polarization along the normal to the reaction plane, P, is its polariza-
tion in the scattering plane, and a is the angle between P and the beam direction.
Usually the helicity frame of references for a particle t al\mg part in a two-body process
is chosen in the following wov: the z-axis is parallel to the three-momentum of the particle
{or to the reversed three-momentum of the centre of mass svstem if the porticle is at rest)
and the y-axis is parallel to the normal to the reaction plane (>r exactly to p,xpg for the
reaction 1+2 — 3 44). Formula (2.7) means that in our conventions the transversity frame

i» consiructed in the following wav:
z, = ¥, — along the normal,

¥, = —z, antiparallel to the momentum,

x, = a, — to form a right-handed svstem (2.8)

(there is a mistake in B in this point). Similarly for an antiparticle we have
- Y ¢
3= Ve ¥y T Xy, X, T A (2.9)
These three frames of reference are displayed in Fig. 1. This detailed discussion was necessary
as all angular distributions and all values of polarizations are referred below to the transversity
frame.

- X

Fig. 1
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We present now our notation for the amplitudes

s-channel, a+c¢ — b+d, amplitude G, .., (2.10a)
¢t-channel, a-+b ->c+d, amplitude Fyaw s (2.10b)
u-channel, b+c —a-d, amplitude H,;,,, . (2.10c)

By convention, particles b, ¢ in the t-channel and particles @, b in the u-channel are al-
ways treated as antiparticles — the convention of Eq. (2.3) is used. The crossing relations
for our amplitudes are

de = (_— 1)b+cei(wbb—wdd—waa +wcc)F_cd bs (2.11)
de,ac = (__. 1 )a+cei($cv+’;dd—';’_aa—';bb)H_ad’_bc. (212)

In each case they are determined only to a transversity-independent phase-factor (¢f. Svens-
son 1966). Formulae for the crossing angles  and y can be found in the papers by Trueman

and Wick (1964 — their notation in ; == 9,, Yo = ¥, %1 = ¥.» X2 = ¥4) and by Bialas
and Svensson (1966). These angles are shown in the velocity diagram (Fig. 2).

Invariance properites of the interactions imply relations between amplitudes. Space-
-reflection invariance implies that in all processes considered here half of the transversity
amplitudes vanish

de,ac =17 (—_1)a+c—b_dde,ac . (213)
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Here n = n,mn,.1, (=12 depends on the intrinsic parities 7, of the particles; s is the
sum of the spins of all the antifermions involved. Note that for the majority of our reac-
tions 7 = +1 and then the sum of transversities is conserved modulo 2. Besides, 7 has
the same value for all of the reactin channels.

In a similar way, from time-reversal invariance we obtain

— T
de,ac - Gac,bd (2'14')
and from invariance under charge conjugation

Goae = G4, —amc- (2.15)

Here G7 is the amplitude for the time-reversed process and G€ — for the charge-conjugated
process. This means that transversity does not change under time-teversal but changes its
sign under charge conjugation.

By simply exchanging both incoming and outgoing particles we obtain the relation

de,ac = Gfb (2.16)

ea *

For n-p scattering we also need the relation obtained by using an isospin rotation I which
changes proton into neutron and neutron into proton

de,ac = GI{d,ac . (217)

Our Eqs (2.13)—(2.17) can also be rewritten for the ¢- and u-channel amplitudes. All these
relations will be used to obtain independent amplitudes.

The spin density matrices of produced resonances can be expressed by the amplitudes.
We quote here only two formulae: the simplest one for a resonance produced by scattering
on an unpolarized target

Qua = ZVI ; de,acG;d’,ac (218)

and the most complicated for the joint density matrix of two resonances produced on
a polarized target
Gsapa = No 25 CoaaclecCrarsac - (2.19)
acc’

Coefficients N; and N, are to be found from the condition Tr g = 1. g is a density matrix
which describes the target.

If a resonance is produced in a parity-conserving reaction with unpolarized initial
particles, its transversity density matrix satisfies the equation

Cmm = (__1)m—-m'9mm’ (220)

i. e. its every second element vanishes. This is also valid in the case of a target polarized
along the normal to the reaction plane. The joint density matrices have an analogous pro-
perty

— (__‘1)m+n,——m’—n' (221)

an,m’n’ an,m'n’ .
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The angular distribution of a resonance two-body decay can be determined by using

the following formula (¢f. Gottfried and Jackson 1964, slso B, Eq. 3.1)
W9, ¢) =N X [Ma, p)}2 (D), o5 & ()0 pOm (2.22)

a,fB,m,m’

where angles @, ¢ are measured in the transversity frame, M{a, §) are decay coupling
constants which fulfil the relation

M(a, )| = |[M(—a—p)] (2.23)

if parity is conserved in the decay, and a, f# arc helicities of the decay products. NVis a normal-
ization coefficient which can be found from the condition

[dgd (cos HW(D, @) =1 (2.24)
and therefore
N Y M, 2‘;‘;1 (2.25)
Py ’

The explicit formulae for the angular distributions for several decays are given in B (there
are some errors in this reference — all the terms with sin ng should have the reversed
signs). A formula similar to Eq. (2.26) is also valid for the joint decay distribution (cf.
Pilkuhn and Svensson 1963).

It is easily seen that if Eq. (2.20) is satisfied then the decay distribution (2.22) does
not depend on g, —0_,. _, butonlyong, .+o_,. . .Thisis another way of expressing
the familiar fact that one cannot measure all the elements of a density matrix merely from
the two-body decay distributions. This is true even if Eq. (2.20) is not fulfilled (target
polarized not along the normal).

o_ . for odd m—m/'.

for even m—m’ and o, ., —0_,. _,,

Oune can find then o, . +0 ..,
Note that if the helicity amplitudes have equal phases (as is the case one-particle or
one Regge-pole exchange, ¢f. Biatas and Kotandski 1966) then the density matrix in the

transversity basis has the property
(-)m,m’ = Q—m’,fm (2'26)
(with target unpolarized) because then the transversity amplitudes satisfy the relation

{cf. B)

Gy — 1B Fsatsemso—sa bd,ac (2.27)

—a—c (

where s is the sum of the spins of all antiparticles taking part in the reaction.
The transformation from CMS to LAB is fairly simple for the transversity density
matrices. It has the form

ar” = g, (2.28)
and, for the particle b
LAB _ iws(b—b)

Opp Opp (2.29)
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The Wigner angles @, and o, are connected with the crossing angles {¢/. Fig. 2)

0 =Yy, W5 = T—Y, (2.30)

Finally, the differential cross section (for an unpolarized target) in the s-channel is
in our conventions

dt 1 1 .
do ~ 167A(s, m2, m3)  (2sa+1) (2s.+1) ; |Co.ap| (2.31)
where
Ma, b, ¢) = a?+b?+c2—2(ab+be+ac). (2.32)

3. Reactions of the type 1j27+1/2+ — 1/2+ 4 [}2+

Apart from the nucleon-nucleon scattering we have here also the production of the
spin 1/2 isobars., We shall consider in detail the nucleon-nucleon scattering which is more
complicated as it is subject to more symmetries and, on the other hand, simpler because
the equality of masses implies simple crossing relations.

In the general case we have eight independent amplitudes in the s-channel which

may be labelled G(bd, ac) = G, where

Gy= G+ +,% 1), Gy = G-+ =), Gy = Gl =t =), Gy = G(+ —,— 1),
G5 = G(—+,+ =), Gg = G(— +,— +), G; = G(——, + ), Gy =CG(——,——).  (3.])

For the proton-proton and neutron-proton scattering, there are additional relations between
the amplitudes and only five independent ones remain. In the table below the symmetries
in question are written down. The amplitudes in all channels are labelled as in (3.1) (Table ).
Notation: T — time reversal, £

exchange of two particles, € — charge conjugation,
I — isospin rotation exchanging the proton with the neutron (¢f. Eqs (2.14—2.17)).

TABLE [
Symmetries applied for Relations
Channel ! (same for both reactions)
= pp | np — np
|
s 7, E | T, IE Gy=06,,6,= Gy
‘ C, = Gy
13 CT, CE | CTl, CE Fi=F, F,=Fg:
: Fo=F,
u T, CE T, CEI Hy,=H, Hy = H;,
| e

In the equal-mass case the crossing relations are remarkably simple

G, = e F, = e*H,

62:F2:H2
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Gy =F,=H;
G, = F, = H,
Gy, =F, = H;
Gy = Fy, = H,
G,=F,=H,
Gy = €2¥F, = ¢ ¥H, (3.2)
with
Y=Y =AY, =AY = Yy 3.3y
and
V=AY, =AY =Y =Yy (3.4)
The crossing angle in this case is
cos p = —(—ts) bls—dm?) i(Am )%,
sin p = 2m(t +s—A4m2)%(s—4m?2) % (Am2—1)% (3.5)

and the similar formulae for ¢ can be obtained from Eq. (3.6) by substituting ¢ —> u2.

We shall discuss now how one can measure all the parameters, e. g. in the reaction
np — np.

The moduli of the five amplitudes can be found from the differential cross section
and the polarizations of both the final particles measured with the target particle first un-
polarized and then when polarized along the normal to the scattering plane. In order to
get the values of the relative phases between the amplitudes one must measure the polariza-
tions of the final particles when the target is polarized in the scattering plane. All these
measurements should be performed for at least two values of the target polarization in
each direction. Of course, such experiments seem to be rather difficult at present.

For an unpolarized target we have:

il ! 5 (|G1[2+2|Gy[2+2|G4[2 +2|G,[2+|Gsl?) (3.6).‘

Zl; = 64' 7!2.(39 mtzv me
and the final particle polarization (equal for both particles and directed along the normal) is:

1

P = ; 2
(CETaGET oG, E T2 G+ |G !

(3.7)

—1Gsl®)-

For the target polarized along the normal (P,)

dt 1

o |~ Ghomd(s, it md) [G1P(A +Pn) +-2]Go|? + 2| G5[>+2[Gy[2 +1Gg|2(1—P)] (3.8}

2 Incidentally, we see that the crossing relations are comparible with the discrete symmetries (¢f. the
Table I).
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and the polarizations of the final particles (still along the normal) are:

d 1 _
- PO = e g UG +P)—2P(Gol*+|Gy[*— |G, )
—1Gsi*(1—Py)}, (3.9)
and
d 1 ’ / '
d—(tf !np(d)" = Gtmats, 2.y P+ P) = 2P(|Gy P+ [Gyl*—[Ca[2) | Gl(1—Pu)}

(3.10)
We see that the moduli of the amplitudes can ben obtained from Eqgs (3.6)—(3.10).

For the target polarized in an arbitrary direction, i. e. with ihe density matrix (2.7)

1 [1+P,, iP,,e“f“]
oce

ST 9 | —iPe 1-P, (3-11)

the differential eross section and the normal polarization of the final particles are still given
by Egs (3.8)—(3.10) and their measurement cannot provide any new information.
However the outgoing particles have then a coplanar polarization given by

da . 1 . . . o

o Palb)emi=® = ] {(G,Gi+ GyGole=i2Py—(G,G3+ G,G3)eiaP,} (3.12)
and

do —ia(d) 1 * —ia * * i

'd'z an(d)e = @%;Lm {(GIG3+G3GS)6 Pp—'(6264+6462)Pp€ } (313)

Subscripts p and n refer to the transversity frame (labelled ¢ in Fig. 1).
We see that from quantities (3.12) and (3.13) (measured for at least two values of a)
one can find all relative phases between the five amplitudes.

4. Type 1)2++1j2+ - 1/2+ 4 3/2+

An example of this type is the spin-3/2 isobar production in nucleon-nucleon collision.
There are 16 independent amplitudes, after taking account of parity conservation. We shall
label them with numbers. They fulfil the crossing relations:

Lo G(+2p,+—) = exp [i(yy—3ys—pa—9c)2] F(+5%5,+—)
= —exp [1((—p, +3p,—Ya—93)/2] H(—%p,— )

2. G(+33,—+) = —exp (v 3yt vy, +9.)/2] F(—3/y,——)
= exp [i(—p,+3y,+9,+9.)/2] H(+35.—+)
3. G(++,+4) = —exp iy —vu—yatv)i2] F—+,+ )

= —exp [i(—y+9;—v,+v)2] H(—+.—+)
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4 G(++,-—) = exp [ly,—py+ya—y)2] F(++,——)

= exp [y, sty —p)2) H(++,——)
5.6 (+—,+—) = exp [y, +ya—ya—y)2l F(+—,+ )

= —exp [i(—yp—yu—y,—9)/2] H(+—,+—)
6. (G(+—,—+) = —exp [iy, +ys+y, +9)/2] F(-——,——)

= exp li(—y—yy+y,+9)2] H(+—,—+)
T G+ 3ot )= —exp [i(y, +3y,—y, +9,)/2] F(——3y,+—)

=—exp [i(— =39y, +9,)/2) H(——"%/5,—+)
8. G(+—3p——)= exp lilyy +3py+y,—v)/2] F(+—3,——)

= exp [i(—yy—3p; v, 92 H(+—3y,— —)
9. (=P, +) = exp [il(—y,—3yy—y, +y)/2] F(—3/y,++)

= exp [ilp, +3y, -y, +y)2]  H(=3/y,++)
10. G(—35,——) = —exp [i(—y,— 3y +va—v)/2] F(+35,—+)

= —exp iy, +3y, +v,—v.)2]  H(+3%5,+—)
L G(—=+,+—) = —exp [i(—yp—py—v,— 2] F(++,++)

= exp [i(yy v~y 2] H(—+,+—)
2. G(—+,—+) = expli(—w—vat+y, +9)2] F(—+,—+)

= —exp [{(@p+pat9, +¥)/2]  H(++,++)
B, 6(=—++) = explil—y+y,—v,t9)2] Fl——,++)

= exp (Y, —Yg—¥at9)2]  H(——,++)
4. 6(=—,——) = —exp [i(—yy +ygtv,—y)i2] F(+—,—+)

= —exp li(Wy—yy+y.—v)2]  H(+—,+—)
15, G(=—35,+ =)= —exp [i(—y, +3y,—v,—v)/2] F(+—3]5,++)

= exp [i(yy—3ps—p,—v.)/2] H(——?5,+—)
16. G(—=—3,—+)= exp [i(—y, +3y,+y, +9.)[2] F(——3,—+)

= —exp [{(p,—3y, +9,+v,)[2] H(+—35,+ +)
(4.1)
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The isobar density matrix (s channel, unpolarized target) is

|
0GP G Gl 0, GG+ Gabyt GG+ Gl

‘4 l01|2‘+“c2|2+|09‘2+|Gw|2» 0, GG+ CyGs+Gy6r3+GiyGyy 0 '1\
\

o(d) = ] . ,
| G5Gi+GoGy+ Gyl +GiuGrys 0, [G52+|Gol2+ Gyl 2+ 161y l2, 0, |
l,l 0, G163+ GGy + G561y +G1Grys 0, |G 24 |Gg 2+ |Gy 2+ [Gyg?)
— (4.2)
< where
N =1/ Z |G, ]2 (4.22)
/(\5\ =
g
—  The corresponding angular distribution of the decay into two particles of spin 1/2 ans 0 is
= (¢f. B. Eq. C.28)
s
% (o, p) = [( + S—‘) +3 ( — Z) cos? 9— /3 sin® 9 Re(Se%?)  (4.3)
= with
< 23 = (G [Gol2 +[Gr 2+ G2+ |Gy2 +[Grol2 + (G5 1 G (4.32)
QO
= 16
= R = Y}|G,? (4.3b)
Q =
é and
~ S = G1Gs+ GyGo+ GyGry+ G1oGry + GGy + Gy G+ Gy G + Gy Gl (4.3¢)
<
O . , U
~  The recoil nucleon polarization is given by:
N
P
= 8 16
= P N (ZI6,P- 3G, (@4
n=1 n=9
<
¢y  One can also measure correlations between isobar and nucleon polarizations, namely the
<t dependence of the recoil-nucleon polarization on the isobar decay angles. Tt is expressed

by the joint density matix
*
sapar = N 23 CoaacChoarac (4.5)
ac

in the following way:

1 0 3 31 %
P(&, ¢) = . E (0vd, 18" — O Y4d,— %) 2 D'l(gp, &, 0)amD'"™ (@, &, 0)arm.  (4.6)
dd’

m=—Y,%
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5. Reaction 1)2+4-1/2+ — 3/2+ +3/2+

Space reflection invariance leaves us in this case with 32 amplitudes in each of the
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three channels. They fulfil the crossing relations:

L Gy 35,4+ +) = exp [—i(y+3y)]
2. (%l 3f——) = exp [—i(—p=37)]
3. Gy Yy, +—) = exp [—2iy]

4. Gy Yy,—+) = exp [—2iy]

5. G(ly—Y3——) = exp [—i(y+1)]
6. G(3ly—1]y,——) = exp [—i(—y+y)]
7. G333y, +—) =

8. G(3/2—3/2,———+-) =
9. 63350+ —)

= exp [—2iy]
10. G(Yy3)y,— +) = exp [—2iy]
11. G(Yy Yy, ++) = exp [—i(p+7]
12. G(Yy Ygo——) = exp [—i(—yp+2)]
13. G(fy— g +—) =

14. G(l/z"llzv— +) =
15. G(Yy—3a,+ +) = exp [—i(y—y)]

F(—35,+—33)

= exp [i(yp+3y)]
F(=p——y)]

= exp [i[—y+3%)]
F(+3Y5,4+—3/y)

= exp [2iy]
F(—Yy,——33)

— exp [2ix]
F(——15,+—3/5)

= exp [i(p~7)]
F+—3— =3

= exp [i(—p+7)]
F(+ =35, + =) =
F(——3y,— %) =
F(+3/5,+—1/,

= exp (2iy)
F(—7fp,——13)

= exp [2iy]
F(—s,+—5)

= exp [i(p+71)]
B+, — =

= exp [i(—p+7)]
F( =Yoot =) =
F(——1fy,— 1) =
F(——-3/y,+ =35

= exp [i(y—2)]

H(“—s/z»“s/f")

H(+30y,—3,—)

H(—="3,—%>—)

H(+Y2,—35+)

H(——=15,—=%+)

H(+—3,—%—)

H(— =33, — %)

H(-= =305, +)

H(—=3f3,—,—)

H(+%[3,—2+)

H("l/za 1/2+)

H(+Yy,— 1)

H(——p,— )

H(+—1a,=p )

H(——%3,—3+)



16.

C(=e=2——) =

exp [i(y +y)]

F(‘}‘—'3/29~’_1/2)

49

= exp [—ilp+)] H(+—?/p—"s—)

Gy e+ +) =exp =ity (=)
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19.

20.

21.

22,

23.

24.

26.

27.

28.

29.

30.

G(=Yy= o+ +)

G(—y="pr—)

G(—1a—%2,+—)

G(—=o=—2l2— +)

- 6= %z + )

(=23 %f5:— +)

G(—313 Yo+ +)

C(=2 Yz— )

(=25 +—)

C(=2y=ar— )

= exp [—i(p—y)]

= exp [i2x +v)]

= exp [2iyx]

= exp [207]

= exp [—i(p—y)]

= exp [i(yp+x)]

= exp [2iy]

= exp [2iy]

F(=—=Y5,+1,)

= exp [i(y—y)]

F(=—=15,—1,)

= exp [—i(p+7)]

F(+—33,+15)
= exp [—2iy]

F(——3,—3)
= exp [—2iy]

F(+35,+35)

F(—3/5,—%3)

F(—Y3,+%3)

— exp [ip—7)]

F(415:—25)

= exp [—i(y+)]

F(4—15,+3[3)
= exp [—2iy]
F(——13,~3[5)

— exp [2i7]

=exp ily+2)]  H(—%5 Yp+)

. G(—1y 3y——) =exp [—i(—yp+0] F(+3,—1,)
= exp [i{—yp+y)] H(+3/2’ Yy—)
G(’l/z 1/2a+—‘) = F(+1/2v+l/2) = H(—llzvl/z—)
G(*‘l/z 1/2’—+) = F(—l/z»—l/z) = H(+1/2’1/2+)

H(——="13, Yo t)

H(+—~13, Y—)

H(——%, ',—)

H(+ 33, Y5 +)
H(—=2y, 3y =)

H(+3]5, 3/,+)

H(—=155 %2 +)

H(+Y4, 3f,—)

H(——5 %2—)

H(+—=3, %2 +)
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3L G(—3y—3)y,+ +) = exp [—i(py—3y)]  F(——3;, %z +)
= exp [i(y—31)]  H(——5,,%y+)
32, G(—3[3—3)5,——) = exp [i(y-+3y)] F(+ =23, *5—)
= exp [—i(p+3y)] H(+—%,,*—) (5.1)

If the initial particles are identical, as well as the final particles, e. g. for the reaction
p+p — N*(1236) +N*(1236) there are further relations between the amplitudes. The same
can be said of processes in which the two pairs of particles are related to each other by
isospin (as p-+n) or charge conjugation (as p--p). E. g. for identical particles we have the rela-
tions: Gy = Gyg, Gy = Gg. G5 = Gy, Gy = Gig, Gy = Gy, Gg= G5, Gz = G, Gy
= Gg, G153 = Gy, Gig = Guog, Gog = Ggg, Gyy = Gog. Therefore there remain 20 indepe-
ndent amplitudes. Similar relations are satisfied in the crossed channels where they can
be independently derived from CT and CE invariance in the ¢ and u channel, respectively.

The crossing relations were written down under the assumption that in both the initial
and final states there are pairs of particles of equal masses. Then there are only two different
crossing angles which were denoted:

Y=Y, = aT—Y,, X=Y; =Ty, (52)

for s-t and

V=Y =AY L= Y=Y, (5.3)

One of the authors (A. K.) is indebted to Dr A. Bialas for stimulating discussions.
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