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The decay of thermodynamic fluctuations in antiferromagnetic order has been investigated
on the basis of the master equation. The calculations have been performed in the constant coupling
approximation for Heisenberg antiferromagnet with spin s = 1/2 at the lattice site, generalized
to cover the nonequilibrium conditions, analogously to the case of ferromagnets. The decay
appears to be described by the diffusion equation for the magnetic moment fluctuation in each
sublattice separately. The diffusion coefficient changes very slowly with temperature in the
vicinity and above the Néel point and has a nonzero valve at Ty

I. Introduction

The decay of fluctuations in antiferromagnetic order has been investigated theoretically
by De Gennes and Villain (1960) and by Halperin and Hohenberg (1967). However, the
results of these papers cannot be treated as conclusive. Our calculation will be based on
the master equation as in the ferromagnetic case (Kocinski 1963, 1964, 1966) and will lead
to the description of the decay exactly analogous to that of the ferromagnetic fluctuations.

IT. Method of calculation

We shall consider cubic two sublattice Heisenberg antiferromagnets of IV spins s = 1/2,
at the equilibrium temperature above or at the Néel point Ty. A fluctuation in antiferro-
magnetic order is treated as a subsystem of IV, spins in the reservoir of N—N; spins (Ko-
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ciniski and Wojtczak 1968). A fluctuation is described by the set of values of magnetic mo-
ment Mj’,(;:-, £), ME(r; +0, )i=1,2,...N,;/2 in the A and B sublattices, with the condition:

M7 +0, ) = —M5E(T;, ) )

where ¢ is a constant vector, which connects two nearest neighbour spins. The magnetic
moments represent average values over an ensemble of fluctuations, which is realized in the
spin system.A fluctuation in antiferromagnetic order is treated as a superposition of two
fluctuations in magnetic moment each in one sublattice. The simultaneous decay of magnetic
moment fluctuations in each sublattice determines the decay of the fluctuation in antiferro-
magnetic order,

When the deviation from equilibrium value at the time considered is large, a fluctu-
ation almost surely decays. The degree of deviation from equilibrium is expressed by the so
called abnormality of the fluctuation state taken as initial, which is measured by the ratio
of this initial state to the root mean square fluctuation (for each Fourier component of the
fluctuation). The decay of a fluctuation may be described in the terms of master equation
for a pair of spins in the formulation of the constant coupling approximation (Kocinski
1963, 1964, 1966). Two limiting cases will be considered, of very weak and very strong
exchange interaction of a spin with its z nearest neighbours as compared with that with its
{ next nearest neighbours.

III. Weak coupling between sublatiices

In the case of weakly coupled sublattices, the decay in time of magnetic moment in
a single one is mainly determined by the exchange interaction between spins within it.
This fluctuation in magnetic moment decays according to the diffusion equation of the
ferromagnetic case (Kociniski 1963, formula (30)) with the diffusion coefficient

A = MeeTod? 1—?) A+ 52+ A1+ 7)
Ch A+ (A1) +4

where d is the distance to the nearest neighbour and { the number of nearest neighbours
in a single sublattice, n = exp (—Jy/kzTy), A = exp (—2u (B, +B)/kzT,). The exchange inte-
gral J, for the nearest neighbour spin in a single sublattice is related with the Néel temperature
by means of the ferromagnetic case relation:

)

kgTnIn ZTE—ZL‘ = 2J, 3)
{(vide formula (55) of Kasteleijn and Van Kranendonk 1956a). The field B, in 4 is the mole-
cular field of a ferromagnetic sublattice to be determined from the constant coupling approxi-
mation (Kasteleijn and Van Kranendonk 1956a) and B denotes the external field. At the Néel
temperature we get
8kpTnd?
c2h

The temperature dependence of A is the same as in a ferromagnet.

A= 4
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IV. Strong coupling between sublattices

The calculation will follow the course of the ferromagnetic case (Kocinski 1963, 1964,
1966) and will be limited to temperatures above or at the Néel point and zero external magnetic
field.

A pair of nearest neighbour spins in the fluctuation! is described by the effective Hamil-
tonian

Ho = 2]y Say Sapya—200 [(aZ]412) 85,— (|07, 0| +67.0) S5,1.] ®)

where a? = a*(r, t) and b7 = b*(r, t) denote the fluctuations in the molecular fields of the 4
and B sublattices in the minus and plus z directions respectively, u is Bohr’s magneton,
J; the exchange integral for the nearest neighbour spins which belong to different sublattices.
The fields represent average values over an ensemble of fluctuations, realized in the spin
system. We have to calculate the matrix elements of the pair density operator

§® = exp (—B ,)[Tr exp (—f #,), f = (kgT)? (©)
in the representation of the spin product functions |++>, |[+—>, |—+>, |——>. To

this end we observe that the eigenvalues of the Hamiltonian (5) are given by
1 , 1
go=—5 i~ Ui+ 2%, &= — S h+Ui+(uZ))%

1 1
& = E-]l_lﬂsc’ & = 5-’1"‘#50 (7)

with ¢ = |a|+b, and Z¢, dc denoting the sum and the difference of the fields at the adjacent
lattice sites. The corresponding diagonal elements of the operator o have the form:

f, =ePHZ Pyl p=0,1,2,3. 8)

Now, the matrix elements of o® in the spin product representation are equal to

0+ = g Lot fo=f) sn ol

1 .
Oty —4 = §[fo+f2‘(f0_f2) sin w] ©)
1
04454+ =J1 0——s —— =f3 g‘+7+—:9f—’_+:§(f2—f0) cosw
with
sinew = puZc(JE+ (uZc)?) % (10)

The probabilities n’% , (i, k = +, —) of finding the state of “+—"" or ““— -+ spins at

rrto
the lattice sites r, r+-a are determined by the diagonal elements in (9). The probabilities of

1 Note that the direction of & varies, since & runsover the nearest neighbours of a spin, while the direction
of ¢ in (1) is constant.
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finding a ““+” or ‘“—"" spin at the lattice site r are given by the expressions
o
n, = nrr+a+nrr+a
n, = nr,r1a+nr,r+u (11)

These are not microscopic probabilities which refer to a particular pair of spins, but macro-
scopic probabilities, which refer to macroscopic states for which the spin is meant a classical
vector.

The probabilities n will be expressed in terms of the fluctuations in magnetic moment
in the sublattices by means of the relations

m? (7, T+, ) = 2uz"1 Tr [(57+52, )o®] = 2uz"1S
ma (7, T+a, t) = 2uz" Tr [(§7— 87, )o@ = 2uz"1s (12)
S=fi—fs s = (fo—S) sinw (13)

for the fluctuation in magnetic moment of the pair, which follow from the relations (33)
and. (34) of Kasteleijn and Van Kranendork (1956b). The average value of magnetic moment
of the spins at the points r and 7-+a treated as members of the pair are given by

m*(7, t) = uz"Y(S+s)
m*(r—a, t) = pz(S—s) (14)

while the values of the fluctuations in magnetic moment at the lattice sites 7 and 7+a are z
times larger (each spin belongs to z pairs) and denoted by

ME(r, 1) = 2m? (7, )
M(T+a, t) = zm*(r+a, ). (1

The expressions for the £, and sin o depend on the values of the molecular field at the points 7
and 7+a. We want to express the magnetic moment at the point 7 in the terms of the molecular
fields at this point. In the limit d|a|, 660 we have f;—f; = 0 and we get the expressions

H Y Z si 1 7] 2” :
Mi(t) ~ u(fo—fp) sinw = 14377 A (|as! -+

—1 2u
M old) = plfy—fo) sine — 5 -

1+3n (1ar+a]+br+a) (16)

with 9 = exp (—Jy/kgT,), which show that the magnetic moments in the two sublattices
point in opposite directions. These relations enable the expression of the probabilities n
in the terms of magnetic moments and the resulting formulas exhibit complete analogy
with the ferromagnetic case, as far as the dependence on the sum and difference of the
magnetic moments at the lattice sites 7 and 72 is concerned.

We can now pass over to the determination of the decay of the fluctuation in magnetic
moment of a single sublattice. From the master equation for the change in time of the
probability of finding a ““+” or ““—”" spin at the point 7 we get the equation for the change
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in time of the average value of the z component of the spin at point 7:

1 @ _ _ -
‘2— ot (nr — I, ) = W(nr, :—+a—”:r+¢) (17)

where W=W . =W b denotes the transition probability per unit of time from
the |+—) to |—+) state.

It is emphasised that the probabilities n refer to macroscopic states and the transition
probabilities to transitions between these macroscopic states (Van Kampen 1962). To the
macroscopic spin product state corresponds the microscopic one, connected with the
Hamiltonian (5) without the exchange term, in which the fields a, b are now treated as
external fields acting on the pair, and not averages over an ensemble of fluactuations. The
relevant |+ —) and |— +) eigenstates are degenerated with energy ¢ = 0 in the limit of
dlal, 6b->0. The exchange term 27,5 - 3‘2 is now introduced as a perturbation which acts
between antiparallel spins. It causes transitions between the |+—) and |—--) eigenstates,
The transition time is determined from the time dependent |4+ —) (or |—+)) state:

1 ) . )
|+—_ >, = — ((pO ez3l,t/2ﬁ+(p2 C—z],t/2ii) — eilitl2k <COS AJ_lt_ l_|__ > 4 i sin '[Lt_ '__ + >)
V2 h h

(18)

where

1
po=—=(+—>—|—+>), @=—=(+—>+|—+>)
V V2

are the perturbed eigenfunctions of the pair for d|a|, 6b — 0. The pair is in the |[+—)
state at t = 0 and passes to the |— - state after the time v = h/4J;. The transition pro-
bability ¥ is defined as 71

We now take the formulas (9) and (11) for the probabilities expressed in the terms of
the magnetic moment fluctuations, expand them in series with respect to M and ZAM and
insert into the equation (17) together with the calculated value for #. Having taken an
average over the z nearest neighbours of the spin at r we get the diffusion equation for the
decay of the fluctuation in the magnetic moment of a single sublattice with the diffusion
coefficient
2kBTOG2

A= zh

(n~2—1), (19)
where a denotes the lattice constant, and the exchange integral J, is related to the Néel
temperature T, by the condition (69) of Kasteleijn and Van Kranendonk (1956b):

2(z—1) (=1 +2(n;2+3) In 5, = 0.
For z = 8 one gets from (19) at the Néel point and at infinite temperature respectively:

k B TN(Z

(20)

4]1(5

A(oo — 0.75 A(Tw) @1)
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Contrary to the case of weak coupling between the sublattices and to the ferromagnetic
one, for strong coupling the diffusion coefficient diminishes with growing temperature. The
relation

AQ2Ty) = 0.86A(Ty) z=8 (22)

indicates the degree of bending down of the A(T) curve.
Comparison of the diffusion coefficients for a model with weak coupling and strong
coupling between the two sublattices and the same Néel temperature shows that

A (weak coupling) > /A (strong coupling)

where the equality sign corresponds to Néel point. It may be expected that a model which
takes into account both the interactions between nearest and next nearest neighbours, will
lead to intermediate values of the diffussion coefficient. However, the net result will be that
above the Néel point the diffusion coefficient changes very little with temperature for ranges
of temperature of experimental interest. The situation is completely analogous with that
of the ferromagnetic case.

V. Conclusion

The description of the decay is macroscopic in character, because it starts from the
master equation and uses the concept of molecular field. The transitions which appear
in the master equation refer to macroscopic states and their calculation by means of spin
reversal represents a simplification. However, the transition probability W contributes only
a constant factor to the diffusion coefficient and does not affect its temperature dependence.

We have not discussed the influence of the fluctuations in temperature in the crystal
lattice on the fluctuations in antiferromagnetic order. This effect is essential in ferromagnets
for the building up as well as for the decay of the fluctuation. It undoubtedly exists in anti-
ferromagnets and its investigation would be necessary.

Thus far the diffusion coefficient in antiferromagnets has not been determined experimen-
tally. The present calculation enables a confrontation of the theory of critical scattering
previously presented (Kocinski 1968) with the results of future measurements.
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