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MAGNETIZATION AND THE SPECTRUM OF ELEMENTARY
EXCITATIONS OF THE UNIAXIAL ANISOTROPIC FERROMAGNET

By H. KonwenTt* Anp T. SixrLés

Joint Institute for Nuclear Research Laboratory of Theoretical Physics Dubna, USSR**
( Received April 24, 1968)

The expressions determining the magnetization and the spectrum of elementary excitations
are derived for the uniaxial anisotropic ferromagnet. Their dependence on the temperature and
the external magnetic field is discussed. The calculations were made using double-time tempera-
ture-dependent Green-functions.

In the previous paper [1l] an equation for the relative magnetization was obtained
and the spectrum of elementary excitations was calculated in the case of uniaxial anisotropic
ferromagnet. Double-times Green-functions were applied and a special procedure was
introduced for the decoupling of the higher order Green-functions. The free energy was
minimized in order to get the direction of the magnetization. It was shown in the paper [2],
that for the determination of the direction of the magnetization an equation can be obtained
if some requirements are imposed for the analytic properties of the Green-functions.

The method of double-time anticommutative Green-functions was applied in the
work [3] to investigate a system, described by the Hamiltonian of the Ising-model with
perpendicular external magnetic field.

In this paper the method of the work [3] will be applied for theinvestigation of the prop-
erties of uniaxial anisotropic ferromagnet in the framework of Heisenberg’s model.

It is worth-while to note, that using this method it is possible to obtain a correlation
function of the type (by(t)b,(t)> vanishing if ¢ =¢' and f = g. Furthermore expressions
will be deduced for the spectrum of elementary excitations and for the relative magnetization
at various field orientations with respect to the anisotropy axis of the crystal.

1. We consider uniaxial anisotropic ferromagnet in the framework of Heisenberg’s
model with spin s = }. The axis of the anisotropy is chosen as the Z-axis of the coordinate
system. For the sake of sipmlicity we consider the case, when the external magnetic field H
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lies in the (x, 2) plane. In the simplest case of the anisotropy, the Hamiltonian is given by

U= — = Y I fI 88— 5 Y R ) S8 Z St —uH, Z Sf
f:f: Sfihs
(1.1)

where the isotropic and anisotropic part of the exchange integral are denoted by I(f3, f5)

= I(| fi—/f2|) > 0 and R(fy, f;) = R(|fi—/2|) respectively. S; means the spin operator of

the electron, situated at the point f of the lattice, and p stands for the Bohr-magneton.
We introduce the Pauli operators bf, b}*‘ by means of the transformation

$F— % {(1—2n) cos §—(b+by) sin 9)
S = 3 {(1=2n) sin 9+ (8] +1y) cos 0}

i
S =5 (6 —bp, (12)

where n; = b}b;. The parameter & of the transformation will be determined later on.
The transformed Hamiltonian takes the form:

W= Eom 5 &l b~ 5 3 o fo) bty
'

fx:fg
1 ~
— 5 Y WU /) fbf b+ Y Eny—
fl;fa f
1 1
-5 f}_; VfisfD) (b0 +bpns— ; U(fy, fo)nsns, (1.3)

where the following notations are used:
U(f1/f2) = I(f1, f2) + R(f1, f3) cos® @
V(f1.f2) = R(f1, [f2) sin & cos &
W (f1.fo) = R(fi. fo) sin® 9
Wt =21 )+ WS fo)

& =& — —;— V(0) = p(H* cos 9—H? sin 9)— % R(0) sin 9 cos ¢
&y = &+ % U(0) = u(f* sin 9+ H® cos 9) + —;‘« (I(0) + R(0) cos? 1)
Ey=—— ( I(O) + — R(O) cos? 19)

10) = Y (/i fds RO = Y R(fifo). (14)
fl fl
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The dependence of magnetization on the temperature and on the external magnetic
field will be obtained with the help of retarded double-time anticommutative Green-func-

tions [3]:
G = <b,(9)b4(0)> = 0(£)<b,(£)5,(0) +b,(0)]y(2)>
CB(t) = b} |by(0)>
CD(t) = <nylt)|b,(0)>. (15)

Making use of the equations of motion for the operators b, bg and n, in Heisenberg’s

picture, we can get the following system of equations for our Green-functions:

: d - Ca(t) = iay(g, h) 0()—6() 21b+

+ Y {EzA(f—g>— 2, g>} RO— 5 Z P, G0 +

f
- }: {emf 9— 5 N g)} CAHOE

1
2

1 ~
Y W0 <blbf i)l > + 5 Y WS g) <nebylon> +
f f

1
+ 5 ‘; W/, 8) > binelbn> — Y. U(f, 8) > berylbn> +

f
+ ; V(f, g) < nynglbn>; (1.6)
j GINE) = i ag(gs ) 8(t) +0(8)E, b —

Yy { Af—8) — 3 W, g)} iR + Z W(f,8) Gk (1) —

f
- Slaaga- Lo ey Y e <t bt e -
f

f

1 ~ 1
-5 Z W(f8) <bfneltis> — 5 ; P, &) < bimglbn > +

+ 20 U(fs &) < ngb [ba> — ;J V(S &) > nynglba> (L7)
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. d . 1.
i GR(D) = iag(g, WO+ 5 B{CH (1) — G ()} —

1 = + 1
-~ Lf\: (S, &) < b b—b belw>— Z W(f, 8) < bj by —bbglbn —
1
— 5 3 VU 8) <O —bImylbr>s (1.8)
f

where
ay(g, h) = 2{bb,),
ay(g: h) = 2¢b by +ad(g—h)
ag(g, h) = 2{ngb,> +bA(g—h)
o =1-2(n = 1—2n.

The expectation values {bz), <b;"), {n,) are independent of the lattice index f, because
of the translational invariance. Using the equations of motion for the operatr Sf and taking
into account (1.2), we can easily prove that

by = <bfy =b. (1.9)

2. In order to get a closed system: of equations for the Green-functions (1.5) we introduce
the same decoupling method of the higher order Green-functions, as in the paper [3]:

<bsb[b> = BGP() +CHA2))
<nghylby> = nGEXe) +bG(t)
<bby|b,> = B(GR(D) + CP(1))
<nnlb> = n(GR(O) +GED)) 2.1)

and apply similar expressions for the other higher order Green-functions.
Substituting the expressions given by (2.1) into the equations (1.6)—(1.8) and performing
the Fourier transformation defined by

C() = f CS(E)~Edt,
GE) =+ ¥ GABEP (a=1,2,3), (2.2)

14

we get:

{E—A®)+B()} GP(E)+B() 6P(E)—{2C(») —D()} G(E)

_ .ﬁf {a,(v) E—N%, bA@) 2.3)
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—B()G(E) +{E+A(») —B()} GP(E) +{2C(»)—D(»)} G(E)
— Zn—LE {ay() E-+ NEFAG)) (2.4)
— C) CP(E)+C0) CO(E) + E CH(E) — é ), (2.5)

where:

Ap) = A + % 1(0)oe,

™
5 B = % R(») sin 9 (o sin & +2b cos 9)
=
1 -
é\ C»)=C + 5 K0) be,
= . )
- D(v) = 5 R(v) cos ? (o sin & +2b cos )
Z
§ A = u(H# sin 9 + Hecos 9) + % R(0) cos @ (o cos 9—2b cin )
,E C= ?1): u(H* cos 9 —H? sin &) — % R(0) sin #(a cos #—2b sin &)
- & = 1—I(»)[[(0). (2.6)
E Solving the system of equations (2.3)—(2.5) and applying the standard methods of
% the Green-function theory (cf. (4)) we can get the following expressions for the spectrum
—  of the elementary excitations
8 E(v) = VA%(») +4C%»)—2[A(v) B(») + C(») D(»)]. 2.7
EC) For the Fourier transforms of the correlation functions defined by:
c§ TP =<y TH=fbys T = ngby 2:8)
= we get the following system of the equations:
2 {A()—B®)} I'P—B@) I'®+{2C(r) —DE)} 'Y
E{ —
E‘:J = % B(v)— ~[21 {2C(»)—D(»)—N& A(»)}; (2.9)

B() I''’ —{A(») —B@)} I'?—{2C(»)—D()} I'Y
— % {A(v)—B(v)-—E(v) cth -;j ﬂE(v)} +
+ % {2C(»)— D) —N&,A()}; (2.10)

Co) {rP—rPy = —g- C»)— g E() cth % BE®). (2.11)
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Tt is easy to see, that equations (2.9), (2.10) lead to the following relation:

ro_r® - 2{1— j,) cth — ﬂE(v)} (2.12)

Now we turn to the determination of the transformation parameter 9. We define the
transformation parameter by the requirement

b=0. (2.13)

From the equation (2.12) immediately follows that both of I'® and I'® cannot be
zero. Therefore the equation (2.11) leads to the following equation:

uH* cos ¢— (,qu—!— 1

R(0) o cos f}) sind =0 (2.14)

if we take into account the requirement b = 0. Thus the parameter 9 of the transformation
is determined by the equation (2.14).
Taking into account (2.13), (2.14) and the following equations:

I

¥

e>v = Cbebr) =0; (2.15)

1 1 l1—0
=Y TP =Y by = by = 5 (2.16)
we can get from (2.12) a transcendental equation for the relative magnetization o

11 Z E(v) h%ﬂﬁ(v) - (21;)3 fda jﬁ:; th—;—ﬂE(v) (2.17)

(o)

and an expression for the spectrum of the elementary excitations:

E@) = VA2»)—2A4(»)B(v). (2.18)

where

A) = pH* sin 8-+ (uH* + %R(O)acos 9) cos 9 + %I(O)as,,

B(y) = % R(»)o sin? 9. (2.19)

In the case of an isotropic ferromagnet, when R(f, g) = 0, we get the results of the papet [5],
and the direction of the magnetization is parallel to the external magnetic field, as it can be
seen from the equation (2.14). In the case, when I(f, g) = 0, we get the results of the paper [3].

In the following sections we shall consider two different cases, namely, the case of
R(0) > 0 and R(0) < 0, for some directions of the external magnetic field.
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3. At first let us consider the case, when R(0) > 0.
a) When the external field is parallel to the axis of the anisotropy, that is: H* =0,
H* = H + 0, the equation (2.14) takes the form:

{yH—i— % R(0) cos 19} sind =0 (3.1)

and its solution is sin ¥ = 0, & = 0. In this case (2.17) and (2.18) can be expressed by means
of (2.19) as:

E() = uH+ i;— (1(0) -+ R(0) —I(»)} (3.2)
% - 72:)7 f d3 cth % BE®). (3.3)

As we see, the magnetization is directed along the anisotropy axis.
b) When the external magnetic field is perpendicular to the axis of anisotropy, that is
H* = H # 0, H* = 0, the equation (2.14) can be written as:

1—,uH_ — sin #f cos & = 0, (3.4)
5 R(O)o
which has two solutions. If
= ZZ) - >1 (3.5)
3 0

n
the solution is cos & =0, & = 3 Thus, in the case of strong magnetic field the magneti-

zation is parallel to the external magnetic field, and for (2.17), (2.18) we get:

Y
E(y) = [ pH + —;—1(0)08,] 1—% "Rl(”) (3.6)
uH+ 5 1(0)oe,
1 %
== (2”7)3 d% 1—% "Rl(”) cth % BE(). 3.7
uH+- 3 I{0)oe,
In the case of weak magnetic fields, when
- sH (3.8)
'§' R(O)O'

the solution of the equation (3.4) can be written as

uH
1/2 R(0)o

sin ¥ =

(3.9)
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i.e. the direction of the magnetization differs from that of the external magnetic field. Now
using Eq. (2.19), the equations (2.17) and (2.18) read as:

1 “_\'re |
5 RO)o
g
B0) = 5 (0 +RO—10)] [1- Yo @.10)
1 e 2R(v) "
L RO
1 v fdav A2 cth= BEW) (3.11)
s = @GP T0) + R(0)—1() g PE)- :

It is evident that the expressions (3.12), (3.10) and (3.3), (3.11) take the same form if H = 0:

E(y) = % {I(0) + R(0) —I(»)} (3.12)
%— - “(zfz—)a j a3y cth% BE(») (3.13)

and ¢ = 0, i.e. without external magnetic field the magnetization is parallel to the axis of
anisotropy.

4. Let us now consider the case, when R(0) < 0.

a) When the external field is parallel to the anisotropy axis, that is H* =0, H®
= H # 0 the equation (2.14) can be written as:

l—“li— — cos 9| sin® = 0. (4.1)
5 |R(0)|o
In the case of strong fields
1——“H— >1 (4.2)
5 |RO)o

the solution is sin & = 0, & = 0, i.e. the magnetization parallel to the external magnetic
field. The expressions (2.17), (2.18) take the form:

E) = ull + - o{10)—|RO)| ~I0)} (4.3)
% = (2—’;)3- f d3 cth% BE(). (4.4)
If the external field is weak
1—"H— <1 (4.5)
— [R(O)|o
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then the solution of (4.1) can be expressed as

H
cos @ = 1—ﬁ (4.6)
2 [RO)Jo
and for the expressions (2.17), (2.18) we get
N A
| IRw)|| 1— T_/‘{I__
o 5 IR(0)|o
. _ % 0)— l ;
7 E@) =5 {J0)~I0} |1+ T0)—10) (4.7)
&2
H \:N%
= RO)| [ 1 [55—
Ne)
S L f 3 IRO)s 1
~— el 3 el
= p FEE d3v |1+ 0 —1) cth 5 BE(v). (4.8)
5
é Finally let us consider the case, when the external magnetic field is perpendicular to the
. axis of anisotropy: H* = H +# 0, H* = 0. The equation (2.14) has now the feollowing form:
= 5 '
{yH—i— = |R(0); sin 19} cos ¥ =0 4.9)
Ry
S n
= its solution is cos ¥ = 0, & = PR i.e. the magnetization is perpednicular to the axis of
S
8 anisotropy, and by virtue of (2.19) Eqs (2.17), (2.18) can be written as:
s 1 1 %
E@w) = {uH+ = o(I(0)—I(»))} |1+ = o|R()| (4.10)
= 2 2 a
S uH+ 5 (10)~T0)
3
1 v 1 o|R(v % 1
5 = fd% 1+ 5 G' Gl cth 5 BEB). (4.11)
- kH 5 (10)~(B)
&~
< In this case it is obvious again, that (4.7), (4.10) and (4.8), (4.11) are identical, if H = 0:
_ % qo)— [R)| 1"
E@) = 5 {IH0)—I(»)} {1—|— [0 —10) 4.12)
L v [dav 14 RO 1 th ~ BE®) (4.13
o (2n)3 I0)—I@w)f “M 2P 13)

. . - 3 . . n
and the magnetization is perpendicular to the axis of anisotropy: @ = 7
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5. We summarize our results. We have obtainéd expressions for the spectrum of elementary
excitations and an equation for the relative magnetization, which are valid for all temperature
and for both of positive and negative anisotropy. We studied in details two special cases,
when the direction of the external magnetic field is parallel and perpendicular to the aniso-
tropy axis.

The expressions obtained for the spectrum of elementary excitations are the same, as
in the paper [1], but our equations for the magnetization are more exact, bacause of the
more consistent method used in the decoupling of the Green-functions.

Finally it is worth-while to note, that our method and the Tyablikov’s method of
decoupling [4], [5] leads to the same results for an isotropic ferromagnet.

It is a great pleasure to express our gratitude to Professor S. V. Tyablikov for va-
luable discussions and advice and also to Dr N. M. Plakida for helpful discussions.
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