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It is proved that the abelian Wightman field 4(x) is a polynomial in x variables. Some
natural conditions are indicated under which this polynomial is a constant or vanishes.

1. Introduction

Let us consider a scalar neutral field which commutes with itself on the domain of its
definition 1i.e.,

[A(x), A(¥)] =0 for every x and y. (1.1)

We shall call such fields abelian.

Such a field need not vanish, e.g., every iranslationally invariant operator satisfies (1.1).
Of course, A(x) safisfying (1.1) has to be reducible, unless the Hilbert space is one-dimen-
sional. Moreover, in case the vacuum £ is unique?! it can not be cyclic with respect to A(f),
as the relation (1.1) together with the spectral condition implies also the vanishing of the
two point Wightman function which in turn implies

A(f)£2=0 (1.2)

Since we are interested only in nonvanishing abelian fields — A(x) can neither be local
with respect to any field B(x) whose cyclic vector is £2 nor have £2 as a cyclic vector for the
commutant of the algebra of A(x).

Araki [1] showed for local bounded operators that the elements of the center are trans-
lationally invariant. In case A(f) under considerations is selfadjoint, it can be spectrally
decomposed and for each spectral projection of this operator the theorem of Araki holds.
However, Araki’s proof makes an essential use of the boundedness of the operator and there-
fore it is unclear whether it can be extended to unbounded operators.

1 Although the existence and uniqueness of the vacuum is irrelevant for the forthcoming considerations
we may assume it to match physically interesting cases. We assume then also (2, A(f)£2) = 0.
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It is rather obvious that the abelian Wightinan fields are of little practical use in quantum
field theory. They appear in some heuristic treatments of quantum fields in spaces with
indefinite metric [2], which are out of the scope of our theorem presented below.,

In this paper we consider the simplest abelian Wightman field satisfying some differential

equation. The class of differential equations for which our considerations hold is large

enough and includes as a special case the Klein-Gordon equation with finite mass term. We
shall see that the case with vanishing mass term has to be singled out in our considerations.

We have shown that such an abelian field vanishes identically. There are several ways
to prove this statement of which we are going to present two.

2. Formulation of the Theorem

Let A(f) be a scalar, neutral Wightman field [3] defined on D, which is linear and
dense in 9. We assume that f(x) € d, i.e., that A(f) is tempered.
Let A(f) be covariant with respect to a continuous representation T(a) of the trans-

lations group
T(a)A(f)T(—a) = A(f,) 2.1)
where '

Jox) = flx—a)
T{a) = f exp (iap) E(dp) = exp (iPa) (2.2)

V+
Pa = Pya,—Pa.

As usually we assume that A(f)D C D and also D(4) = E(4)D C D for any Borel

set 4 in momentum space where

E(4) = [ Bdp), (2.3)

Finally one assumes that A(f) is abelian on D
[4(f), A(g)]D =0 for all f,g €D (2.4)
and that it satisfies some differential equation of the form
(4, L*(3)f)D = 0. (2.5)
Such that the differential equation‘
L(9)Q(x) =0 (2.6)

does not admit any polynomial solution.
Our purpose is to prove the following

Theorem: The field A(f) satisfying the conditions (1-6) vanishes identically on (.
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The proof of this Theorem consists of two steps. In the first step presented in two
versions in Part 3 and 4 we prove that the field A(x) isa polynomialin x. The socond, prese-
in Part 5, is based on the lemma concerning the Klein-Gordon equation. '

3. The First Proof Showing that A(x) is a polynomial in x

We follow closely Araki’s idea of proving the commutativity of the centrum of the
algebra of local observables with the translations T(a), [1].

Let us fix the Fourier transforms of A4(x) and f(x) as follows
A@) = @0)~2 [ dpd(p) exp (ip=)
fx) = @) [ dp f (p) exp (—ips). (3.1)
In this case we have
A(f) = [ Ap)F(pdp
[A(N1* = [ A(=p) F*(p)dp- (3:2)
With this convention of signs in exponents we have
A(f)D(4) C D(A+ supp f)
[A(f)]*D(4) C D(4—supp f) (33)

since

DAY CcDA”y i A CA”.
Now for any set A, with the property
A(f)D(Ag) = 0 (3.4)

one may construct a sequence {4,} of domains such that

A(F)D(T A = 0. (3.5)

n=1

It is sufficient to assume only that
A,—suppfCAd, 1, (n=12,..). (3.6)
Indeed, we have then
[A(N*A(F)D(A,) = A)NAN*D(A,) CAS)D(A,_y)- N )
Using induction method with respect to n we obtain

[A())*A(/)D(4,) = 0. (3-8)
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Taking into account the positive definiteness of the metric in &€ we obtain
A()D(A4) =0, (n=0,1, ...). (3.9)
Hence, using the fact that D(U A4,) cU D(4,), the result (3.5) follows.
n=1

n=1

Analogously, starting with the condition

[A(/)]*D(4g) = 0 (3.10)
and the chain of domains 4. such that ‘
A, +supp fC 4,_, (3.11)
we obtain :
LANID(T 4 =0 (312)

It is convenient to choose for 4, and A, the complement of the closed upper cone
Ay = Ag=M\V, (3.13)

Another possibility was indicated by Jancewicz [4]. Now, if the support of £(p) contains
points lying outside the V, then the domains A, C 4,_, + supp f will cover, in the limit
n — oo, the whole upper cone V. Therefore, we will have from (3.5)

A YD =0 (3.14)
since

EM)= E7,) =1

Similarly, if supportf’(p) has points outside of 7, then 4, C 4,_,— supp f’ will cover
again the whole M. Hence, we will get

[A(f)]*D =0 " (3.15)
Comparing both relations we conclude that
(v, A(@)yp) =0 for all  yy, 9, €D. (3.16)
if @ has the support outside of the point p = 0. Therefore, A(p) is concentrated only in this
point. As one knows [5] such a distribution is a finite sum of derivatives of the §-function
~ N ~ .
(1> A(p)y) ZkZ Culyr, y)D*o(p)  N-finite (3.17)
=0
or in x-space,
N
(‘1#1’ A(x)p,) =k20 Celyy, pp)a*
where
, 3
xF = (xo)k"(?ﬁ)k'(xz)k’(xs)k’y k= Z k;
i=0

Hence A(x) is a polynomial in «.
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4. The Second Proof Showing that A(x) is a polynomial in x

For the sake of simplicity we shall outline the proof giving up the mathematical rigour
which, however, can be easily restored. We assume also for simplicity reasons, that the
vacuum is unique (see the footnote on page 407).

For the 4-vector in the Minkowski momentum space & # 0 and —k S V_,_ from the
spectral condition follows

A2 =0 (4.1)
From (4.1) and {2.4) follows
[AR]*Q = A(—HR =0 (4.2)
Eq. (4.1) holds for every £ #0. For p—k € V, and any vector-valued distribution
satisfying
Py(p) =pa(p), #=0123
from the spectral condition as well as from (2.4) follows
Akyy(p) =0 (4.30)
(AR *p(p) = 0. (4.3b)
From the conservation of energy and momentum (translational invariance) follows
(AEp(p), p() =0
for k4r # p. _
But also for p—2k €V
(AEYp(p), p(p—H) = (p(p), [A(W]*p(p—H)) = 0

in virtue of (4.3). Thus again (4.3) holds for p—2k € V.. An iteration procedure applied
to p—nk € V; leads by induction to (4.3). Thus as long as k # 0 (4.3) remains valid since
to every given k € V_and p € ¥, we are able to find sufficiantly large n so that p—nk € V..
For k € V_ we have

A(—Ryp(p) = [AE])*w(p)
as well as

[A(—B)]*y(p) = A(k)p(p)

both vanishing because (—k) € V_.
The state £2 and the vector valued distributions p( p) span the whole Hilbert space,
thus

ARy =[AB)]* =0 for k0 (4.4)

Since A(k) is a dlstrlbutlon in the k-space w1th one-point support it is a polynomial in the
x-space, viz.

N
AR =3 et
k=0
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where C, are operators defined on a dense set in ), transforming under translations according
1o. '

N
T(a) C,T(—a) = Z ( Z) C " (4.5)

n=0

and commuting with one an other

5. The Proof of the Theorem

If A(x) satisfies the equation L(&) A(x) = 0 which does not allow any polynomial
solutions then A(x)-vanishes identically.

Clearly, when A(x) is bounded the coefficients Cy, & > 0 vanish and A(x) = 4 is
a translationally invariant operator.

Now, we are going to verify that the Klein-Gordon operator [J — m? with m >0 is
a good candidate for L(9). Namely we shall prove the following:

Lemma. If Py(x) is any polynomial of N-th order satisfying the Klein-Gordon equation
with non-zero mass then Pp(x) = 0.

Proof. The general form of Py(x) is the following

N
Py(x) = kzo(k kEk .\ Crohkr, (xo)k"(xl)k‘(xz)k’(xa)k’§'If0+ kythytky =k (3.18)

or symbolically
N
Py(x) = 2] (S
E=0

Acting with the operator [] — m? on Py(x)
‘we obtain the conditions on Cj

Cy=Cn_y=0
m? € = L(Cy, ) (3.19)

where L(C, ;) means the homogeneous linear combinations of coefficients of 42 order.
Hence, all the coefficients C, vanish when m? # 0. In the case m = 0 one can easily
find a polynomial solutions in accordance with the d’Alembert solution of the wave equa-
tion.
The authors wish to thank Mr A. Jadczyk and Mr B. Jancewicz for their interest in this
work and for discussions and comments.
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