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The idea of permutation symmetry of three triplets in the Han-Nambu model, taken
together with the previously proposed saturation mechanism provided by a complex ‘‘quark
charge”, solves the problem of unwanted mesons in this model.

As it is well known the quark model argues that baryons }* and §" belonging to the
56 multiplet of SU(6) group are essentialy three-quark systems in ground states, whereas
mesons 0~ and 1~ form the 35+1 multiplet are two-body systems consisting of one quark
and one antiquark in ground states. If three quarks contained in those baryons belong to
one SU(3) triplet [1], [2], this triplet must have non-integral electric charges (2/3, —1/3,
—1/3) and baryonic charges 1/3. If they are from two [3] or three [4] different SU(3) triplets,
these triplets can have either non-integral or integral [5]-[12] electric charges (2/3+c;,
=1/3+¢;, —1/3+¢) (i =1, 2, 3), where ¢;+cy+c; =0, and baryonic charges 1/3+d;
(¢ =1, 2, 3), where d,+dy-+d; =0.

The three-triplet quark model [4] offers an important theoretical advantage in the
discussion of the binding mechanism of quarks. Namely, treating three triplets as different
states of the same triplet and imposing on all quarks the over-all Pauli principle, we con-
clude that three quarks in baryons belonging to the 56 multiplet are not prevented to be
bound with each other in some S states. This follows from the fact that the states from the
56 multiplet are symmetric under the exchange of SU(6) quantum numbers and so they
are symmetric with respect to orbital degrees of freedom, if they happen to be antisymmetric
under the exchange of intertriplet quantum numbers.

If we assume the three-triplet model to be valid, we immediately face two fundamental
questions: which quantum numbers infer the difference between three triplets and why only
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three quarks from three different triplets can form comparatively stable baryon states.

In a previous paper [13] we have proposed a possible answer to these questions by postulat-
ing the existence of a complex ‘‘quark charge” Z with the following properties:

1. The Z charge has three ‘“‘smallest” eigenvalues z,(i =1, 2, 3) of the same absolute

value
a1} = lea| = |as| =1, 1)
©  if we normalize them to one.

Z Hence, ascribing the eigenvalues z; to quarks we get three different triplets of quarks.
M~ Antiquarks have then the Z charges equal to —z;, since a quark and its antiparticle should
. form ‘‘neutral” states with respect to the Z charge.

3
3
2. The sum of the eigenvalues z; is equal to zero
>
§ 21+ 2,+25 =0, )
>~ Thus, three quarks form ‘‘neutral” states with respect to the Z charge if and only if they
—  are from three different triplets. Obviously, three is the smallest number of quarks which
—  can form ‘‘neutral” states with respect to Z. Due to (2) we can simply assume that c; and d;

are linear combinations of Re z; and Im z;, e. 8. ¢; = A Re z;+p Im z;.
<
O

E 3. The Z charge is the source of a neutral vector meson X
Q 3
3 (O-m)X, () = ~ig ) 23/1)y,a:), (3)
Q~4 i=1
E‘i g;(x) being three quark triplets and g a real coupling constant.
= From the properties (1) and (2) we can see that
= 2=1, @
: if one of z; is equal to one. Putting, e. g., 23 = 1 we get from (4)

% —1+i)/3 —1—i)/3
< % = 5 13 = B » 23 = L. ()

The interaction hamiltonian of quarks and an X meson following from the property (3)
has the form

3
H=ig -21 2,9:(%)7,8:%) X;; () + h. c.

3
=ig V?%] ,(%)y,4:(%) [Re 2, X}(x) +Im 2,X ()], ©)
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where
X, +XF X, —Xr
= DHZ Tk X = DE 2k (7)
[/2 i)2

The formula (6) says that the interaction of X meson is equivalent to the sum of interactions
of two different vector mesons X® and X7.

If we want to have conservation of the charge conjugation C in the interaction (6),
we are obliged to assume that X® and X’ mesons have the same charge parity C (actually
equal to —1). Then X and X* are also eigenstates of C in spite of the fact that X, is not
a hermitian operator. This means that the X meson carries in this case no internal charge
and its non-hermitian character is in a sense trivial.

From (6) we can calculate the following one-meson-exchange potential for two quarks
belonging to the triplets 7 and j [13]:

X

Vy; = azV, where a; = 2(Re z; Re z;+1Im z; Im z)). 8

In the static case Vis a positive function equal to g2 exp { —mr)/r. Making use of (5) we obtain
2 i=j

@yj { ~1 i )

Thus, in the static case the potential (8) is repulsive for quarks from the same triplet and
attractive for quarks belonging to differrent triplets. It may be reasonable to assume that
the whole interaction between two quarks has this property. Then, in a three-quark system
there appears attraction between all three quarks, if and only if they are from three different
triplets. So, in this case we can expect the strongest binding. Moreover, in this case the quark
system in ‘‘neutral” with respect to the Z charge and, therefore, it is not likely to attach
another quark. On the contrary, one-quark and two-quark systems are ‘‘charged” with
respect to Z. Thus, we can see that the fundamental phenomenon of saturation of quark
forces [14] in the three-quark baryons may be related to the Z charge [13].

For a quark from the triplet i and an antiquark from the triplet j the one-meson-
-exchange potential becomes [13]

Vs=ag?, (10)
where
—2 i=j
S . 11
G;q { 1 i?éj ( )

Thus, in the static case this potential is attractive for quarks and antiquarks corresponding
to the same triplet and repulsive in the case of different triplets. Notice that the attraction
is here twice as strong as for the two-quark system. Of course, the system of one quark
and one antiquark corresponding to the same triplet is ‘‘neutral” with respect to Z and so it
is not likely to attach another quark or antiquark.

Notice that according to (10) and (11) the average mass of the 35+ 1 multiplet should be

My =2M,-2V = 2(M,—V), (12)
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whereas according to (8) and (9) the average mass of the 56 multiplet should be
Mp ~3M,—3V = 3(M,—V). (13)

Hence M, /Mg ~2/3 in agreement with the experimental situation.

Notice also that the three-triplet and one-triplet models give the same average ratio
of the meson-baryon and baryon-baryon total cross-sections, equal to 2/3.

We should like to add a few remarks on the formal construction of the operator of the
Z charge. This can be done by means of the generators of an SU(3) group. This group must
commute with the familiar SU(3) group which defines the isospin I, = Q, (x =1, 2, 3),

2
the hypercharge Y = V—g Q; and the electric charge

1
") =Qs+——3——Qs+1 Re Z+puIm Z, 4

since the inter-triplet quantum number Z is independent of the triplet quantum numbers
I, and Y. Denoting the new group by SU(3)’ and its generators by Q. (« =1, 2, ..., 8)
we infer from (5) that

Z =/3(—Qs+iQy), (15)
because the eigenvalues of Qy and Qg in the fundamental representation are (1/2, —1/2, 0)
and (1/21/3, 1/2]/.?—) ,——1/[/?—1), respectively. Notice that the interaction (6) is not invariant
under SU(3)’ in a similar way as the electromagnetic interaction is not invariant
under SU(3): in both cases there are only gauge invariances generated by the ‘‘3” and ‘8"
operators. Due to this, SU(3) ® SU(3)’ does not describe any approximate symmetry of
quark interactions, while SU(3) is a considerably good symmetry. On the other hand,
however, there is no splitting in mass between three quark triplets caused by the inter-
action (6), since we have [z;| = |z5] = |z5]. If A =0 and g =0 there is also no electro-
magnetic splitting between these triplets. The group SU(3) ® SU(3)’ considered here as
an auxiliary structure has been much exploited by Greenberg and collaborators [15] who
assume that it is an approximate symmetry group of quark interactions.

Now we go over to a serious difficulty of the three-triplet model connected with the
appearance in it of too many meson states built up of one quark and one antiquark. In general,
for each admissible SU(6) ® O(3) state there may exist nine such mesons ¢,; = (951)+9}2))bound
(5,7 =1, 2, 3) in place of one expected in the one-triplet model. In our theory of Z charge
there appears an attraction between quark and antiquark only for i = (see (10) and (11)),
thus the number nine is here reduced a priori to three.

In order to reduce further this number three (actually to one) we introduce into the
three-triplet model a new exact symmetry. Namely, we will postulate that real particle
states of zero Z charge must be invariant (except for possible phase factors) under all
permutations of three triplets. In particular, they must be invariant under the cyclic per-

mutation
Y

N
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of three triplets. Here the numbers 1,2, and 3 are values of the index 7 labelling three triplets
g; = (¢, =1,2,3;¢ =1,2,3). This postulate taken together with the theory of Z
charge gives the following admissible SU(3)®@SU(3) states:

1. for quark+antiquark system: only one SU(3)3*x 3 multiplet

1 2 1 D+ @
a3 (G 5 50T 458 + g8 T g5R),

2. for three-quark system: two SU(3)3x3x3 multiplets

1
1) (2 3 1 2) (3 1 2 3
Ve (6505305 + a50a50s) + asnaiRasy =

1) (2) (38 1) (2.3 1 _(2) 8
{00598, + 45208995, 5295

Here we have written down explicitly only the SU(3)®SU(3)’ parts of the wave functions.

We can see that in the case of the three-quark system the new principle follows from the
ordinary symmetrization postulate for the wave function of a system of identical objects
(with respect to the intertriplet quantum number i). However, in the case of other quark
systems it is a new postulate. Notice that the potentials (8) and (10) exhibit the permutation
symmetry of three-triplets (Vy; = Vg = Vi, Vip = Vg = Vg = Vo = Vo = V13). So,
the configurational hamiltonians of quark systems are consistent with the permutation
symmetry of three triplets (e.g. Hyy = Hyy = Hyy, Hyy = Hyg = Hyy = Hy = Hyy = Hyg,
where H;; = T®+T®+V,). This enables us to assume our postulate on the invariance
of particle states under permutations of thre triplets. The states under consideration must
have zero Z charge to avoid the mixing of different eigenvalues of Z.

Concluding we can say that in the case of mesons built up of one quark and one anti-
quark, the theory of Z charge and the postulate of permutation symmetry of three triplets
reduce the number of admissible meson states to the number given by the one-triplet model.
More specifically, the postulate of permutation symmetry of three triplets admits only the
state

L (pn+ntm)
— 1 s
VNl P11 @233

whereas two other states allowed by the theory of Z charge (see Appendix),

1 1
——(pi1—¢@z2) and —— (pir —@3s),
VN, VN,

are excluded (these two states correspond to one degenerated mass, if we have 4 =0 and

p# =0 or if the electromagnetic interactions are neglected). Here ¢y = (q?)’LqJ(-z)

i1
The author is grateful to Professor Y. Nambu for calling his attention to the permutation
symmetry of three objects in reference to the paper [13].
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APPENDIX

Three states @3 = (¢ pouna G = 1,2, 3,) correspond to the same mass M, if

A =0 and u =0 or if the electromagnetic interaction is neglected. They are not stable
with respect to the mutual transitions ii = jj. These transitions are described in the lowest
order by the one-meson-annihilation diagram. The corresponding one-meson-annihilation
potential turns out to be V; = a,V, i.e. it is equal to the one-meson-exchange potential
for two quarks given by (8) and (9).

We will assume that the states @; = ¢, satisfy the equation

3
Ho+ 2 Vip; =My, (i=1,2,3), (1A)
=1

where H; = T® 4+ T® 4 V:. Making use of the symmetry H, = H, = H, = H, Vii=
= Vo= Vg =2V and Vyy = Voy =V = Vy = Vi = V33=— ¥ we obtain the following
eigensolutions of (1A):

1. Pim, = Pem, = Pam, where H‘PlM. = M1<P1M,,

2. @iy, = —Pamp Pam =Oor} wh
: 3 : ere (H+3V) = . 2A
3. Pint, = — Pty Pans, = 0 P1m, 2P1mM, (24)

Then the eigenvectors and eigenvalues of the matrix (§;H+ V) are respectively,

Pim, 0 0
Lo} 2 | -em) 3| 0 (3A)
0 0 —P1m,
and
M, =M, M, = M+37, (4A)

where 1\04; = (P, Hlo1ar,) and V, = (@10,|V@1a1,) (6 =1, 2). In the lowest order of

the perturbation theory we have M, = ]f/.f2 and ¥, = V,. In the static limit ¥ > 0, then
V,> 0. Since My ~ 2(M,—7V) and Mg~ 3(M,—V), we get an estimate V'~ M, —(Mg — M),

so the numbers ¥, ~ ¥ may be quite large. Then M, is much larger than M. Using (2A)
we can write

1
L om, = §(¢1M1+¢2M‘+¢3M),

1 1
2. qim, = 5 (P11, —pam,) = 3 (P1m, —2@2m,+ p3m,)  oOr

1 1
3. gim, = 5 (p1m, —Pant) = £ (p1m, +pem, —P3n,)-

If our postulate of permutation symmetry of three triplets is true, then only the first of
these states is allowed. Notice, however, that H+3V = T®4 TP 4V, wheteas H =
= TOLT®D 27, so two excited states corresponding to mass M, simply do not exist
as bound states. Thus, in this estimate no postulate of permutation symmetry od three
triplets is needed to exclude these excited states.
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